Gel-forming mucins appeared early in metazoan evolution

被引:222
作者
Lang, Tiange [1 ]
Hansson, Gunnar C. [1 ]
Samuelsson, Tore [1 ]
机构
[1] Univ Gothenburg, Dept Med Biochem, Inst Biomed, SE-40530 Gothenburg, Sweden
关键词
bioinformatics; von Willebrand domain; SEA domain; protein evolution; mucus;
D O I
10.1073/pnas.0705984104
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Mucins are proteins that cover and protect epithelial cells and are characterized by domains rich in proline, threonine, and serine that are heavily glycosylated (PTS or mucin domains). Because of their sequence polymorphism, these domains cannot be used for evolutionary analysis. Instead, we have made use of the von Willebrand D (VWD) and SEA domains, typical for mucins. A number of animal genomes were examined for these domains to identify mucin homologues, and domains of the resulting proteins were used in phylogenetic studies. The frog Xenopus tropicalis stands out because the number of gel-forming mucins has markedly increased to at least 25 as compared with 5 for higher animals. Furthermore, the frog Muc2 homologues contain unique PTS domains where cysteines are abundant. This animal also has a unique family of secreted mucin-like proteins with alternating PTS and SEA domains, a type of protein also identified in the fishes. The evolution of the Muc4 mucin seems to have occurred by recruitment of a PTS domain to AMOP, NIDO, and VWD domains from a sushi domain-containing family of proteins present in lower animals, and Xenopus is the most deeply branching animal where a protein similar to the mammalian Muc4 was identified. All transmembrane mucins seem to have appeared in the vertebrate lineage, and the MUC1 mucin is restricted to mammals. In contrast, proteins with properties of the gel-forming mucins were identified also in the starlet sea anemone Nematostella vectensis, demonstrating an early origin of this group of mucins.
引用
收藏
页码:16209 / 16214
页数:6
相关论文
共 21 条
[1]  
Bateman A, 2002, NUCLEIC ACIDS RES, V30, P276, DOI [10.1093/nar/gkr1065, 10.1093/nar/gkp985, 10.1093/nar/gkh121]
[2]   Improved prediction of signal peptides: SignalP 3.0 [J].
Bendtsen, JD ;
Nielsen, H ;
von Heijne, G ;
Brunak, S .
JOURNAL OF MOLECULAR BIOLOGY, 2004, 340 (04) :783-795
[3]   The MUC family:: an obituary [J].
Dekker, J ;
Rossen, JWA ;
Büller, HA ;
Einerhand, AWC .
TRENDS IN BIOCHEMICAL SCIENCES, 2002, 27 (03) :126-131
[4]   Evolution of the large secreted gel-forming mucins [J].
Desseyn, JL ;
Aubert, JP ;
Porchet, N ;
Laine, A .
MOLECULAR BIOLOGY AND EVOLUTION, 2000, 17 (08) :1175-1184
[5]   Distinct evolution of the human carcinoma-associated transmembrane mucins, MUC1, MUC4 AND MUC16 [J].
Duraisamy, Sekhar ;
Ramasamy, Selvi ;
Kharbanda, Surender ;
Kufe, Donald .
GENE, 2006, 373 :28-34
[6]   Profile hidden Markov models [J].
Eddy, SR .
BIOINFORMATICS, 1998, 14 (09) :755-763
[7]   The N terminus of the MUC2 mucin forms trimers that are held together within a trypsin-resistant core fragment [J].
Godl, K ;
Johansson, MEV ;
Lidell, ME ;
Mörgelin, M ;
Karlsson, H ;
Olson, FJ ;
Gum, JR ;
Kim, YS ;
Hansson, GC .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (49) :47248-47256
[8]   A Drosophila haemocyte-specific protein, hemolectin, similar to human von Willebrand factor [J].
Goto, A ;
Kumagai, T ;
Kumagai, C ;
Hirose, J ;
Narita, H ;
Mori, H ;
Kadowaki, T ;
Beck, K ;
Kitagawa, Y .
BIOCHEMICAL JOURNAL, 2001, 359 :99-108
[9]   Mucins in cancer: Protection and control of the cell surface [J].
Hollingsworth, MA ;
Swanson, BJ .
NATURE REVIEWS CANCER, 2004, 4 (01) :45-60
[10]   Initial sequencing and analysis of the human genome [J].
Lander, ES ;
Int Human Genome Sequencing Consortium ;
Linton, LM ;
Birren, B ;
Nusbaum, C ;
Zody, MC ;
Baldwin, J ;
Devon, K ;
Dewar, K ;
Doyle, M ;
FitzHugh, W ;
Funke, R ;
Gage, D ;
Harris, K ;
Heaford, A ;
Howland, J ;
Kann, L ;
Lehoczky, J ;
LeVine, R ;
McEwan, P ;
McKernan, K ;
Meldrim, J ;
Mesirov, JP ;
Miranda, C ;
Morris, W ;
Naylor, J ;
Raymond, C ;
Rosetti, M ;
Santos, R ;
Sheridan, A ;
Sougnez, C ;
Stange-Thomann, N ;
Stojanovic, N ;
Subramanian, A ;
Wyman, D ;
Rogers, J ;
Sulston, J ;
Ainscough, R ;
Beck, S ;
Bentley, D ;
Burton, J ;
Clee, C ;
Carter, N ;
Coulson, A ;
Deadman, R ;
Deloukas, P ;
Dunham, A ;
Dunham, I ;
Durbin, R ;
French, L .
NATURE, 2001, 409 (6822) :860-921