CTGF directs fibroblast differentiation from human mesenchymal stem/stromal cells and defines connective tissue healing in a rodent injury model

被引:267
作者
Lee, Chang H. [1 ]
Shah, Bhranti [1 ]
Moioli, Eduardo K. [1 ]
Mao, Jeremy J. [1 ]
机构
[1] Columbia Univ, Med Ctr, Coll Dent Med, TERML, New York, NY 10032 USA
关键词
MARROW STROMAL CELLS; STEM-CELLS; GROWTH-FACTOR; STEM/PROGENITOR CELLS; TGF-BETA; IDENTIFICATION; TRANSITION; PROTEINS; FIBROSIS; LIGAMENT;
D O I
10.1172/JCI43230
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
Fibroblasts are ubiquitous cells that demonstrate remarkable diversity. However, their origin and pathways of differentiation remain poorly defined. Here, we show that connective tissue growth factor (CTGF; also known as CCN2) is sufficient to induce human bone marrow mesenchymal stem/stromal cells (MSCs) to differentiate into fibroblasts. CTGF-stimulated MSCs lost their surface mesenchymal epitopes, expressed broad fibroblastic hallmarks, and increasingly synthesized collagen type I and tenacin-C. After fibroblastic commitment, the ability of MSCs to differentiate into nonfibroblastic lineages - including osteoblasts, chondrocytes, and adipocytes - was diminished. To address inherent heterogeneity in MSC culture, we established 18 single MSC-derived clones by limiting dilution. CTGF-treated MSCs were alpha-SMA(-), differentiating into alpha-SMA(+) myofibroblasts only when stimulated subsequently with TGF-beta 1, suggestive of stepwise processes of fibroblast commitment, fibrogenesis, and pathological fibrosis. In rats, in vivo microencapsulated delivery of CTGF prompted postnatal connective tissue to undergo fibrogenesis rather than ectopic mineralization. The knowledge that fibroblasts have a mesenchymal origin may enrich our understanding of organ fibrosis, cancer stroma, ectopic mineralization, scarring, and regeneration.
引用
收藏
页码:3340 / 3349
页数:10
相关论文
共 54 条
[1]   Mesenchymal stem cells: Isolation and therapeutics [J].
Alhadlaq, A ;
Mao, JJ .
STEM CELLS AND DEVELOPMENT, 2004, 13 (04) :436-448
[2]   Adult stem cell driven genesis of human-shaped articular condyle [J].
Alhadlaq, A ;
Elisseeff, JH ;
Hong, L ;
Williams, CG ;
Caplan, AI ;
Sharma, B ;
Kopher, RA ;
Tomkoria, S ;
Lennon, DP ;
Lopez, A ;
Mao, JJ .
ANNALS OF BIOMEDICAL ENGINEERING, 2004, 32 (07) :911-923
[3]   Cell differentiation by mechanical stress [J].
Altman, GH ;
Horan, RL ;
Martin, I ;
Farhadi, J ;
Stark, PRH ;
Volloch, V ;
Richmond, JC ;
Vunjak-Novakovic, G ;
Kaplan, DL .
FASEB JOURNAL, 2001, 15 (14) :270-+
[4]   Isolation of functionally distinct mesenchymal stem cell subsets using antibodies against CD56, CD271, and mesenchymal stem cell antigen-1 [J].
Battula, Venkata Lokesh ;
Treml, Sabrina ;
Bareiss, Petra M. ;
Gieseke, Friederike ;
Roelofs, Helene ;
de Zwart, Peter ;
Mueller, Ingo ;
Schewe, Bernhard ;
Skutella, Thomas ;
Fibbe, Willem E. ;
Kanz, Lothar ;
Buehring, Hans-Joerg .
HAEMATOLOGICA-THE HEMATOLOGY JOURNAL, 2009, 94 (02) :173-184
[5]   The role of the fibrocyte, a bone marrow-derived mesenchymal progenitor, in reactive and reparative fibroses [J].
Bellini, Alberto ;
Mattoli, Sabrina .
LABORATORY INVESTIGATION, 2007, 87 (09) :858-870
[6]   Stromal fibroblasts in cancer initiation and progression [J].
Bhowmick, NA ;
Neilson, EG ;
Moses, HL .
NATURE, 2004, 432 (7015) :332-337
[7]   TGF-β signaling in fibroblasts modulates the oncogenic potential of adjacent epithelia [J].
Bhowmick, NA ;
Chytil, A ;
Plieth, D ;
Gorska, AE ;
Dumont, N ;
Shappell, S ;
Washington, MK ;
Neilson, EG ;
Moses, HL .
SCIENCE, 2004, 303 (5659) :848-851
[8]   Identification of tendon stem/progenitor cells and the role of the extracellular matrix in their niche [J].
Bi, Yanming ;
Ehirchiou, Driss ;
Kilts, Tina M. ;
Inkson, Colette A. ;
Embree, Mildred C. ;
Sonoyama, Wataru ;
Li, Li ;
Leet, Arabella I. ;
Seo, Byoung-Moo ;
Zhang, Li ;
Shi, Songtao ;
Young, Marian F. .
NATURE MEDICINE, 2007, 13 (10) :1219-1227
[9]   Mesenchymal stem cells: Revisiting history, concepts, and assays [J].
Bianco, Paolo ;
Robey, Pamela Gehron ;
Simmons, Paul J. .
CELL STEM CELL, 2008, 2 (04) :313-319
[10]   MESENCHYMAL STEM-CELLS [J].
CAPLAN, AI .
JOURNAL OF ORTHOPAEDIC RESEARCH, 1991, 9 (05) :641-650