SINEs are short interspersed repetitive elements found in many eukaryotic genomes and are believed to propagate by retroposition. Almost all SINEs reported to date have a composite structure made of a 5' tRNA-related region followed by a tRNA-unrelated region. Here, we describe a new type of tRNA-derived SINEs from the genome of the mosquito Culex pipiens. These elements, called Twins, are similar to 220 bp long and reiterated at approximately 500 copies per haploid genome. Tcr,ins have a unique structure compared with other tRNA-SINEs described so far. They consist of two tRNA(Arg)-related regions separated by a 39-bp spacer. Other tRNA-unrelated sequences include a 5-bp leader preceding the left tRNA-like unit and a short trailer located downstream of the right tRNA-like region. This 3' trailer is a 10-bp sequence that is ended by a TTTT motif and followed by a polyA tract of variable length. The right tRNA-like unit also contains a 16-bp sequence which is absent in the left one and appears to be located in the ancestral anticodon stem precisely at a position expected for a nuclear tRNA intron. According to this singular structure, we hypothesize that the Twin SINE family originated from an unprocessed polymerase ill transcript containing two tRNA sequences. We suggest that some peculiar properties acquired by this dicistronic transcript, such as a polyA tail and a 3' stem-loop secondary structure, promote its retroposition by increasing its chances of being recognized by a reverse transcriptase encoded elsewhere in the C. pipiens genome.