Superconvergence and H(div) projection for discontinuous Galerkin methods

被引:71
作者
Bastian, P
Rivière, B
机构
[1] Univ Heidelberg, Interdisziplinares Zentrum Wissenschaftliches Rec, D-69120 Heidelberg, Germany
[2] Univ Pittsburgh, Dept Math, Pittsburgh, PA 15260 USA
关键词
locally conservative projection; superconvergence of fluxes; error estimates; flow; transport;
D O I
10.1002/fld.562
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We introduce and analyse a projection of the discontinuous Galerkin (DG) velocity approximations that preserve the local mass conservation property. The projected velocities have the additional property of continuous normal component. Both theoretical and numerical convergence rates are obtained which show that the accuracy of the DG velocity field is maintained. Superconvergence properties of the DG methods are shown. Finally, numerical simulations of complicated flow and transport problem illustrate the benefits of the projection. Copyright (C) 2003 John Wiley Sons, Ltd.
引用
收藏
页码:1043 / 1057
页数:15
相关论文
共 19 条
[1]  
Adams A, 2003, SOBOLEV SPACES
[2]   The local discontinuous Galerkin method for contaminant transport [J].
Aizinger, V ;
Dawson, C ;
Cockburn, B ;
Castillo, P .
ADVANCES IN WATER RESOURCES, 2000, 24 (01) :73-87
[3]   Unified analysis of discontinuous Galerkin methods for elliptic problems [J].
Arnold, DN ;
Brezzi, F ;
Cockburn, B ;
Marini, LD .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2002, 39 (05) :1749-1779
[4]   AN INTERIOR PENALTY FINITE-ELEMENT METHOD WITH DISCONTINUOUS ELEMENTS [J].
ARNOLD, DN .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1982, 19 (04) :742-760
[5]   2 FAMILIES OF MIXED FINITE-ELEMENTS FOR 2ND ORDER ELLIPTIC PROBLEMS [J].
BREZZI, F ;
DOUGLAS, J ;
MARINI, LD .
NUMERISCHE MATHEMATIK, 1985, 47 (02) :217-235
[6]  
Brezzi F., 1991, SPRINGER SERIES COMP, V15
[7]   The local discontinuous Galerkin method for time-dependent convection-diffusion systems [J].
Cockburn, B ;
Shu, CW .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1998, 35 (06) :2440-2463
[8]  
Cockburn B, 2000, LECT NOTES COMP SCI, V11, P3
[10]  
Girault V., 1986, SPRINGER SERIES COMP