Tensor product multiplicities, canonical bases and totally positive varieties

被引:176
作者
Berenstein, A [1 ]
Zelevinsky, A
机构
[1] Harvard Univ, Dept Math, Cambridge, MA 02138 USA
[2] Northeastern Univ, Dept Math, Boston, MA 02115 USA
关键词
D O I
10.1007/s002220000102
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:77 / 128
页数:52
相关论文
共 24 条
[1]  
BACLAWSKI K, 1986, ADV APPL MATH, V7, P381
[2]   Parametrizations of canonical bases and totally positive matrices [J].
Berenstein, A ;
Fomin, S ;
Zelevinsky, A .
ADVANCES IN MATHEMATICS, 1996, 122 (01) :49-149
[3]   Canonical bases for the quantum group of type A(r) and piecewise-linear combinatorics [J].
Berenstein, A ;
Zelevinsky, A .
DUKE MATHEMATICAL JOURNAL, 1996, 82 (03) :473-502
[4]   Total positivity in Schubert varieties [J].
Berenstein, A ;
Zelevinsky, A .
COMMENTARII MATHEMATICI HELVETICI, 1997, 72 (01) :128-166
[5]  
BERENSTEIN A, 1996, QA9605156, P25
[6]  
Berenstein A., 1993, ADV SOVIET MATH, P51
[7]  
BERENSTEIN A, 1988, J GEOM PHYS, V5, P453
[8]  
Berenstein A., 1992, J ALGEBR COMB, V1, P7, DOI [DOI 10.1023/A:1022429213282, 10.1023/A:1022429213282]
[9]  
Berenstein A. D., 1988, SOV MATH DOKL, V37, P799
[10]   Double Bruhat cells and total positivity [J].
Fomin, S ;
Zelevinsky, A .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 12 (02) :335-380