Activating and silencing the mitotic checkpoint through CENP-E-dependent activation/inactivation of BubR1

被引:206
作者
Mao, YH
Abrieu, A
Cleveland, DW [1 ]
机构
[1] Univ Calif San Diego, Ludwig Inst Canc Res, La Jolla, CA 92093 USA
[2] Univ Calif San Diego, Dept Cellular & Mol Med, La Jolla, CA 92093 USA
基金
美国国家卫生研究院;
关键词
D O I
10.1016/S0092-8674(03)00475-6
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The mitotic checkpoint prevents advance to anaphase prior to successful attachment of every centromere/ kinetochore to mitotic spindle microtubules. Using purified components and Xenopus egg extracts, the kinetochore-associated microtubule motor CENP-E is now shown to be the activator of the essential checkpoint kinase BubR1. Since kinase activity and the checkpoint are silenced following CENP-E-dependent microtubule attachment in extracts or binding of CENP-E antibodies that do not disrupt CENP-E association with BubR1, CENP-E mediates silencing of BubR1 signaling. Checkpoint signaling requires the normal level of BubR1 containing a functional Mad3 domain implicated in Cdc20 binding, but only a small fraction need be kinase competent. This supports bifunctional roles for BubR1 in the checkpoint: an enzymatic one requiring CENP-E-dependent activation of its kinase activity at kinetochores and a stoichiometric one as a direct inhibitor of Cdc20.
引用
收藏
页码:87 / 98
页数:12
相关论文
共 42 条
  • [1] CENP-E as an essential component of the mitotic checkpoint in vitro
    Abrieu, A
    Kahana, JA
    Wood, KW
    Cleveland, DW
    [J]. CELL, 2000, 102 (06) : 817 - 826
  • [2] Mps1 is a kinetochore-associated kinase essential for the vertebrate mitotic checkpoint
    Abrieu, A
    Magnaghi-Jaulin, L
    Kahana, JA
    Peter, M
    Castro, A
    Vigneron, S
    Lorca, T
    Cleveland, DW
    Labbé, JC
    [J]. CELL, 2001, 106 (01) : 83 - 93
  • [3] CYCLIN-LIKE ACCUMULATION AND LOSS OF THE PUTATIVE KINETOCHORE MOTOR CENP-E RESULTS FROM COUPLING CONTINUOUS SYNTHESIS WITH SPECIFIC DEGRADATION AT THE END OF MITOSIS
    BROWN, KD
    COULSON, RMR
    YEN, TJ
    CLEVELAND, DW
    [J]. JOURNAL OF CELL BIOLOGY, 1994, 125 (06) : 1303 - 1312
  • [4] Human BUBR1 is a mitotic checkpoint kinase that monitors CENP-E functions at kinetochores and binds the cyclosome/APC
    Chan, GKT
    Jablonski, SA
    Sudakin, V
    Hittle, JC
    Yen, TJ
    [J]. JOURNAL OF CELL BIOLOGY, 1999, 146 (05) : 941 - 954
  • [5] Characterization of the kinetochore binding domain of CENP-E reveals interactions with the kinetochore proteins CENP-F and hBUBR1
    Chan, GKT
    Schaar, BT
    Yen, TJ
    [J]. JOURNAL OF CELL BIOLOGY, 1998, 143 (01) : 49 - 63
  • [6] Spindle checkpoint protein Xmad1 recruits Xmad2 to unattached kinetochores
    Chen, RH
    Shevchenko, A
    Mann, M
    Murray, AW
    [J]. JOURNAL OF CELL BIOLOGY, 1998, 143 (02) : 283 - 295
  • [7] BubR1 is essential for kinetochore localization of other spindle checkpoint proteins and its phosphorylation requires Mad1
    Chen, RH
    [J]. JOURNAL OF CELL BIOLOGY, 2002, 158 (03) : 487 - 496
  • [8] Association of spindle assembly checkpoint component XMAD2 with unattached kinetochores
    Chen, RH
    Waters, JC
    Salmon, ED
    Murray, AW
    [J]. SCIENCE, 1996, 274 (5285) : 242 - 246
  • [9] Anaphase initiation in Saccharomyces cerevisiae is controlled by the APC-dependent degradation of the anaphase inhibitor Pds1p
    CohenFix, O
    Peters, JM
    Kirschner, MW
    Koshland, D
    [J]. GENES & DEVELOPMENT, 1996, 10 (24) : 3081 - 3093
  • [10] Checkpoint protein BubR1 acts synergistically with Mad2 to inhibit anaphase-promoting complex
    Fang, GW
    [J]. MOLECULAR BIOLOGY OF THE CELL, 2002, 13 (03) : 755 - 766