The quiescent double barrier regime in DIII-D

被引:18
作者
Greenfield, CM
Burrell, KH
Doyle, EJ
Groebner, RJ
West, WP
Casper, TA
DeBoo, JC
Fenzi, C
Gohil, P
Kinsey, JE
Lao, LL
Leboeuf, JN
Makowski, MA
McKee, GR
Moyer, RA
Murakami, M
Pinsker, RI
Porter, GD
Rettig, CL
Rhodes, TL
Staebler, GM
Stallard, BW
Synakowski, EJ
Zeng, L
机构
[1] Gen Atom Co, San Diego, CA 92186 USA
[2] Univ Calif Los Angeles, Los Angeles, CA USA
[3] Lawrence Livermore Natl Lab, Livermore, CA USA
[4] Univ Wisconsin, Madison, WI USA
[5] Lehigh Univ, Bethlehem, PA USA
[6] Univ Calif San Diego, San Diego, CA 92103 USA
[7] Oak Ridge Natl Lab, Oak Ridge, TN USA
[8] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA
关键词
D O I
10.1088/0741-3335/44/5A/308
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The quiescent double barrier (QDB) regime is a high performance regime recently identified in DIII-D and characterized by a double transport barrier structure (core and edge) that can be maintained for several seconds, often limited only by the pulse length capabilities of the DIII-D hardware. The QDB regime has been sustained for up to 25 tau(E) with fusion performance of up to beta(N)H(89) approximate to 7. The edge barrier is ELM-ftee, but modulated by low frequency MHD activity that allows density control via an external cryopump. The core barrier is similar to those seen in previous internal transport barrier experiments, but is maintained without complete stabilization of turbulence. Instead, the turbulence correlation lengths become very short so as to minimize the transport length scales. The two barriers are separated by a region of high transport that is a consequence of a zero-crossing in the E x B shearing rate. These discharges typically possess highly peaked density profiles. This has several implications: narrow bootstrap current profile, reduced beta limit and increased impurity retention. We will report on studies of each of these issues.
引用
收藏
页码:A123 / A135
页数:13
相关论文
共 31 条
[11]   Behaviour of electron and ion transport in discharges with an internal transport barrier in the DIII-D tokamak [J].
Greenfield, CM ;
Rettig, CL ;
Staebler, GM ;
Stallard, BW ;
Austin, ME ;
Burrell, KH ;
DeBoo, JC ;
deGrassie, JS ;
Doyle, EJ ;
Gohil, P ;
Groebner, RJ ;
Lohr, J ;
McKee, GR ;
Peebles, WA ;
Petty, CC ;
Pinsker, RI ;
Rice, BW ;
Rhodes, TL ;
Synakowski, EJ ;
Waltz, RE ;
Zeng, L .
NUCLEAR FUSION, 1999, 39 (11Y) :1723-1732
[12]   AN EMERGING UNDERSTANDING OF H-MODE DISCHARGES IN TOKAMAKS [J].
GROEBNER, RJ .
PHYSICS OF FLUIDS B-PLASMA PHYSICS, 1993, 5 (07) :2343-2354
[13]   Stationary H-mode discharges with internal transport barrier on ASDEX upgrade [J].
Gruber, O ;
Wolf, RC ;
Dux, R ;
Fuchs, C ;
Günter, S ;
Kallenbach, A ;
Lackner, K ;
Maraschek, M ;
McCarthy, PJ ;
Meister, H ;
Pereversev, G ;
Ryter, F ;
Schweinzer, J ;
Seidel, U ;
Sesnic, S ;
Stäbler, A ;
Stober, J .
PHYSICAL REVIEW LETTERS, 1999, 83 (09) :1787-1790
[14]   FLOW SHEAR-INDUCED FLUCTUATION SUPPRESSION IN FINITE ASPECT RATIO SHAPED TOKAMAK PLASMA [J].
HAHM, TS ;
BURRELL, KH .
PHYSICS OF PLASMAS, 1995, 2 (05) :1648-1651
[15]  
Hawryluk R. J., 1980, PHYSICS PLASMAS CLOS, V1, P19
[16]   What is the "beta-induced Alfven eigenmode?" [J].
Heidbrink, WW ;
Ruskov, E ;
Carolipio, EM ;
Fang, J ;
van Zeeland, MA ;
James, RA .
PHYSICS OF PLASMAS, 1999, 6 (04) :1147-1161
[17]   NUMERICAL-STUDIES OF IMPURITIES IN FUSION PLASMAS [J].
HULSE, RA .
NUCLEAR TECHNOLOGY-FUSION, 1983, 3 (02) :259-272
[18]  
JOHNSON LC, 2001, P 28 EPS C CONTR FUS
[19]  
LAO LL, 2000, PHYS PLASMAS, V7, P268
[20]  
LAO LL, 1999, B AM PHYS SOC, V44, P77