Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids

被引:2634
作者
Khanafer, K
Vafai, K
Lightstone, M
机构
[1] Univ Calif Riverside, Dept Mech Engn, Riverside, CA 92521 USA
[2] McMaster Univ, Dept Mech Engn, Hamilton, ON L8S 4L7, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.1016/S0017-9310(03)00156-X
中图分类号
O414.1 [热力学];
学科分类号
摘要
Heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids is investigated for various pertinent parameters. A model is developed to analyze heat transfer performance of nanofluids inside an enclosure taking into account the solid particle dispersion. The transport equations are solved numerically using the finite-volume approach along with the alternating direct implicit procedure. Comparisons with previously published work on the basis of special cases are performed and found to be in excellent agreement. The effect of suspended ultrafine metallic nanoparticles on the fluid flow and heat transfer processes within the enclosure is analyzed and effective thermal conductivity enhancement maps are developed for various controlling parameters. In addition, an analysis of variants based on the thermophysical properties of nanofluid is developed and presented. It is shown that the variances within different models have substantial effects on the results. Finally, a heat transfer correlation of the average Nusselt number for various Grashof numbers and volume fractions is presented. (C) 2003 Elsevier Ltd. All rights reserved.
引用
收藏
页码:3639 / 3653
页数:15
相关论文
共 23 条
[1]   ANALYSIS OF DISPERSION EFFECTS AND NONTHERMAL EQUILIBRIUM, NON-DARCIAN, VARIABLE POROSITY INCOMPRESSIBLE-FLOW THROUGH POROUS-MEDIA [J].
AMIRI, A ;
VAFAI, K .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 1994, 37 (06) :939-954
[2]   NATURAL-CONVECTION FLOW IN A SQUARE CAVITY REVISITED - LAMINAR AND TURBULENT MODELS WITH WALL FUNCTIONS [J].
BARAKOS, G ;
MITSOULIS, E ;
ASSIMACOPOULOS, D .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 1994, 18 (07) :695-719
[3]   THE VISCOSITY OF CONCENTRATED SUSPENSIONS AND SOLUTIONS [J].
BRINKMAN, HC .
JOURNAL OF CHEMICAL PHYSICS, 1952, 20 (04) :571-571
[4]  
Choi S., 1995, DEV APPL NONNEWTONIA, V231, P99
[5]  
DAVIS GD, 1983, INT J NUMER METH FL, V3, P249
[7]   Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles [J].
Eastman, JA ;
Choi, SUS ;
Li, S ;
Yu, W ;
Thompson, LJ .
APPLIED PHYSICS LETTERS, 2001, 78 (06) :718-720
[8]  
*FLUID DYN INT, 1990, FIDAP THEOR MAN
[9]   A NUMERICAL STUDY OF 3-DIMENSIONAL NATURAL-CONVECTION IN A DIFFERENTIALLY HEATED CUBICAL ENCLOSURE [J].
FUSEGI, T ;
HYUN, JM ;
KUWAHARA, K ;
FAROUK, B .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 1991, 34 (06) :1543-1557
[10]   THERMAL CONDUCTIVITY OF HETEROGENEOUS 2-COMPONENT SYSTEMS [J].
HAMILTON, RL ;
CROSSER, OK .
INDUSTRIAL & ENGINEERING CHEMISTRY FUNDAMENTALS, 1962, 1 (03) :187-&