High-level functional expression of a fungal xylose isomerase:: the key to efficient ethanolic fermentation of xylose by Saccharomyces cerevisiae?

被引:252
作者
Kuyper, M
Harhangi, HR
Stave, AK
Winkler, AA
Jetten, MSM
de Laat, WTAM
den Ridder, JJJ
Op den Camp, HJM
van Dijken, JP
Pronk, JT
机构
[1] Delft Univ Technol, Klyver Lab Biotechnol, NL-2628 BC Delft, Netherlands
[2] Univ Nijmegen, Fac Sci, Dept Microbiol, NL-6525 ED Nijmegen, Netherlands
[3] Bird Engn BV, NL-3044 CK Rotterdam, Netherlands
[4] Royal Nedalco BV, NL-4612 PL Bergen Zoom, Netherlands
关键词
xylose isomerase; hemicellulose; fermentation; pentose; yeast; bioethanol;
D O I
10.1016/S1567-1356(03)00141-7
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Evidence is presented that xylose metabolism in the anaerobic cellulolytic fungus Piromyces sp. E2 proceeds via a xylose isomerase rather than via the xylose reductase/xylitol-dehydrogenase pathway found in xylose-metabolising yeasts. The XylA gene encoding the Piromyces xylose isomerase was functionally expressed in Saccharomyces cerevisiae. Heterologous isomerase activities in cell extracts, assayed at 30degreesC, were 0.3-1.1 mumol min(-1) (mg protein)(-1), with a K-m for xylose of 20 mM. The engineered S. cerevisiae strain grew very slowly on xylose. It co-consumed xylose in aerobic and anaerobic glucose-limited chemostat cultures at rates of 0.33 and 0.73 mmol (g biomass)(-1) h(-1), respectively. (C) 2003 Federation of European Microbiological Societies. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:69 / 78
页数:10
相关论文
共 59 条
[1]   Cytosolic enzymes with a mitochondrial ancestry from the anaerobic chytrid Piromyces sp. E2 [J].
Akhmanova, A ;
Voncken, FGJ ;
Harhangi, H ;
Hosea, KM ;
Vogels, GD ;
Hackstein, JHP .
MOLECULAR MICROBIOLOGY, 1998, 30 (05) :1017-1027
[2]   KINETIC-ANALYSIS OF D-XYLOSE TRANSPORT IN RHODOTORULA-GLUTINIS [J].
ALCORN, ME ;
GRIFFIN, CC .
BIOCHIMICA ET BIOPHYSICA ACTA, 1978, 510 (02) :361-371
[3]   Metabolic engineering applications to renewable resource utilization [J].
Aristidou, A ;
Penttilä, M .
CURRENT OPINION IN BIOTECHNOLOGY, 2000, 11 (02) :187-198
[4]   XYLOSE METABOLISM IN A THERMOPHILIC MOLD MALBRANCHEA-PULCHELLA VAR SULFUREA TMD-8 [J].
BANERJEE, S ;
ARCHANA, A ;
SATYANARAYANA, T .
CURRENT MICROBIOLOGY, 1994, 29 (06) :349-352
[5]  
BROWNLEE AG, 1994, ANAEROBIC FUNGI BIOL, P241
[6]   THE ROLE OF REDOX BALANCES IN THE ANAEROBIC FERMENTATION OF XYLOSE BY YEASTS [J].
BRUINENBERG, PM ;
DEBOT, PHM ;
VANDIJKEN, JP ;
SCHEFFERS, WA .
EUROPEAN JOURNAL OF APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 1983, 18 (05) :287-292
[7]   NADH-LINKED ALDOSE REDUCTASE - THE KEY TO ANAEROBIC ALCOHOLIC FERMENTATION OF XYLOSE BY YEASTS [J].
BRUINENBERG, PM ;
DEBOT, PHM ;
VANDIJKEN, JP ;
SCHEFFERS, WA .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 1984, 19 (04) :256-260
[8]   ISOLATION OF BIOLOGICALLY-ACTIVE RIBONUCLEIC-ACID FROM SOURCES ENRICHED IN RIBONUCLEASE [J].
CHIRGWIN, JM ;
PRZYBYLA, AE ;
MACDONALD, RJ ;
RUTTER, WJ .
BIOCHEMISTRY, 1979, 18 (24) :5294-5299
[9]   EXISTENCE OF H+-SYMPORT IN YEASTS - COMPARATIVE-STUDY [J].
DEAK, T .
ARCHIVES OF MICROBIOLOGY, 1978, 116 (02) :205-211
[10]   Xylulose fermentation by mutant and wild-type strains of Zygosaccharomyces and Saccharomyces cerevisiae [J].
Eliasson, A ;
Boles, E ;
Johansson, B ;
Österberg, M ;
Thevelein, JM ;
Spencer-Martins, I ;
Juhnke, H ;
Hahn-Hägerdal, B .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2000, 53 (04) :376-382