GATA- and Smad1-dependent enhancers in the Smad7 gene differentially interpret bone morphogenetic protein concentrations

被引:71
作者
Benchabane, H
Wrana, JL
机构
[1] Mt Sinai Hosp, SLRI, Programme Mol Biol & Canc, Toronto, ON M5G 1X5, Canada
[2] Univ Toronto, Dept Mol & Med Genet, Toronto, ON, Canada
关键词
D O I
10.1128/MCB.23.18.6646-6661.2003
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Smad7, an inhibitor of transforming growth factor beta superfamily signaling, is induced by bone morphogenetic protein (BMP) in an inhibitory feedback loop. Here, we identify multiple BMP response elements (BREs) in the Smad7 gene and demonstrate that they function differentially to interpret BMP signals in a cell type-specific manner. Two BREs (BRE-1 and -2) reside in the promoter region. One of these contains several conserved Smad1 and Smad4 binding sites that cooperate to mediate BMP-dependent induction, most likely in the absence of DNA binding partners. The third BRE (I-BRE) resides in the first intron and contains GATA factor binding sites. GATA-1, -5, or -6 is required for strong activation of I-BRE, and we show that they assemble with Smad1 on the I-BRE in living cells. Activation of the I-BRE is mediated by a specific region in GATA-5 and -6 but does not require direct physical interaction with Smad1. Comparison of I-BRE to BRE-1 showed that I-BRE is more responsive to low BMP concentrations. Moreover, analysis by chromatin immunoprecipitation experiments demonstrates that the endogenous I-BRE is occupied more robustly by endogenous Smad1 than is BRE-1. This correlates with regulation of the Smad7 gene, which is induced at lower BMP concentrations in GATA-expressing cell lines compared to non-GATA-expressing lines. These data thus define how cooperative and noncooperative Smad-dependent transcriptional regulation can function to interpret different BMP concentrations.
引用
收藏
页码:6646 / 6661
页数:16
相关论文
共 86 条
[1]   T beta RI phosphorylation of Smad2 on Ser(465) and Ser(467) is required for Smad2-Smad4 complex formation and signaling [J].
Abdollah, S ;
MaciasSilva, M ;
Tsukazaki, T ;
Hayashi, H ;
Attisano, L ;
Wrana, JL .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (44) :27678-27685
[2]   Nuclear interpretation of Dpp signaling in Drosophila [J].
Affolter, M ;
Marty, T ;
Vigano, MA ;
Jazwinska, A .
EMBO JOURNAL, 2001, 20 (13) :3298-3305
[3]   Induction of inhibitory Smad6 and Smad7 mRNA by TGF-β family members [J].
Afrakhte, M ;
Morén, A ;
Jossan, S ;
Itoh, S ;
Westermark, B ;
Heldin, CH ;
Heldin, NE ;
ten Dijke, P .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1998, 249 (02) :505-511
[4]   Smads as transcriptional co-modulators [J].
Attisano, L ;
Wrana, JL .
CURRENT OPINION IN CELL BIOLOGY, 2000, 12 (02) :235-243
[5]   Smad6 as a transcriptional corepressor [J].
Bai, ST ;
Shi, XM ;
Yang, XL ;
Cao, X .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (12) :8267-8270
[6]   Cardiac tissue enriched factors serum response factor and GATA-4 are mutual coregulators [J].
Belaguli, NS ;
Sepulveda, JL ;
Nigam, V ;
Charron, F ;
Nemer, M ;
Schwartz, RJ .
MOLECULAR AND CELLULAR BIOLOGY, 2000, 20 (20) :7550-7558
[7]   Expression of GATA-2 in the developing avian rhombencephalon [J].
Bell, E ;
Lumsden, A ;
Graham, A .
MECHANISMS OF DEVELOPMENT, 1999, 84 (1-2) :173-176
[8]   Physical and functional interaction between GATA-3 and Smad3 allows TGF-β regulation of GATA target genes [J].
Blokzijl, A ;
ten Dijke, P ;
Ibáñez, CF .
CURRENT BIOLOGY, 2002, 12 (01) :35-45
[9]   c-Myc target gene specificity is determined by a post-DNA-binding mechanism [J].
Boyd, KE ;
Wells, J ;
Gutman, J ;
Bartley, SM ;
Farnham, PJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (23) :13887-13892
[10]   Efficient TGF-β induction of the Smad7 gene requires cooperation between AP-1, Sp1, and Smad proteins on the mouse Smad7 promoter [J].
Brodin, G ;
Åhgren, A ;
ten Dijke, P ;
Heldin, CH ;
Heuchel, R .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (37) :29023-29030