Protostellar holes:: Spitzer Space Telescope observations of the protostellar binary IRAS 16293+2422

被引:36
作者
Jorgensen, JK
Lahuis, F
Schöier, FL
van Dishoeck, EF
Blake, GA
Boogert, ACA
Dullemond, CP
Evans, NJ
Kessler-Silacci, JE
Pontoppidan, KM
机构
[1] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA
[2] Leiden Observ, NL-2300 RA Leiden, Netherlands
[3] SRON, Natl Inst Space Res, NL-9700 AV Groningen, Netherlands
[4] Stockholm Observ, AlbaNova, S-10691 Stockholm, Sweden
[5] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA
[6] CALTECH, Div Phys Math & Astron, Pasadena, CA 91125 USA
[7] Max Planck Inst Astron, D-69117 Heidelberg, Germany
[8] Univ Texas, Dept Astron, Austin, TX 78712 USA
关键词
stars : formation; stars : individual (IRAS 16293+2422);
D O I
10.1086/497003
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Mid-infrared (23-35 mu m) emission from the deeply embedded Class 0 protostar IRAS 16293-2422 is detected with the Spitzer Space Telescope infrared spectrograph. A detailed radiative transfer model reproducing the full spectral energy distribution (SED) from 23 mu m to 1.3 mm requires a large inner cavity of radius 600 AU in the envelope to avoid quenching the emission from the central sources. This is consistent with a previous suggestion based on high angular resolution millimeter interferometric data. An alternative interpretation using a two-dimensional model of the envelope with an outflow cavity can reproduce the SED but not the interferometer visibilities. The cavity size is comparable to the centrifugal radius of the envelope and therefore appears to be a natural consequence of the rotation of the protostellar core, which has also caused the fragmentation leading to the central protostellar binary. With a large cavity such as required by the data, the average temperature at a given radius does not increase above 60-80 K, and although hot spots with higher temperatures may be present close to each protostar, these constitute a small fraction of the material in the inner envelope. The proposed cavity will also have consequences for the interpretation of molecular line data, especially of complex species probing high temperatures in the inner regions of the envelope.
引用
收藏
页码:L77 / L80
页数:4
相关论文
共 22 条
[1]   SUBMILLIMETER CONTINUUM OBSERVATIONS OF RHO OPHIUCHI-A - THE CANDIDATE PROTOSTAR VLA-1623 AND PRESTELLAR CLUMPS [J].
ANDRE, P ;
WARDTHOMPSON, D ;
BARSONY, M .
ASTROPHYSICAL JOURNAL, 1993, 406 (01) :122-141
[2]   Collapse and fragmentation of molecular cloud cores. VI. Slowly rotating magnetic clouds [J].
Boss, AP .
ASTROPHYSICAL JOURNAL, 1999, 520 (02) :744-750
[3]  
Ceccarelli C, 2000, ASTRON ASTROPHYS, V355, P1129
[4]  
CHANDLER CJ, 2005, IN PRESS APJ
[5]  
Dullemond CP, 2000, ASTRON ASTROPHYS, V360, P1187
[6]   Flaring vs. self-shadowed disks: The SEDs of Herbig Ae/Be stars [J].
Dullemond, CP ;
Dominik, C .
ASTRONOMY & ASTROPHYSICS, 2004, 417 (01) :159-168
[7]   From molecular cores to planet-forming disks:: An SIRTF legacy program [J].
Evans, NJ ;
Allen, LE ;
Blake, GA ;
Boogert, ACA ;
Bourke, T ;
Harvey, PM ;
Kessler, JE ;
Koerner, DW ;
Lee, CW ;
Mundy, LG ;
Myers, PC ;
Padgett, DL ;
Pontoppidan, K ;
Sargent, AI ;
Stapelfeldt, KR ;
van Dishoeck, EF ;
Young, CH ;
Young, KE .
PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC, 2003, 115 (810) :965-980
[8]  
Ivezic Z., 1999, record(ascl:9911.001)
[9]   Physical structure and CO abundance of low-mass protostellar envelopes [J].
Jorgensen, JK ;
Schöier, FL ;
van Dishoeck, EF .
ASTRONOMY & ASTROPHYSICS, 2002, 389 (03) :908-930
[10]   Unveiling the circumstellar envelope and disk: A subarcsecond survey of circumstellar structures [J].
Looney, LW ;
Mundy, LG ;
Welch, WJ .
ASTROPHYSICAL JOURNAL, 2000, 529 (01) :477-498