A model for dengue disease with variable human population

被引:184
作者
Esteva, L
Vargas, C
机构
[1] Natl Autonomous Univ Mexico, Fac Ciencias, Dept Matemat, Mexico City 04510, DF, Mexico
[2] Inst Politecn Nacl, CINVESTAV, Dept Matemat, Mexico City 07000, DF, Mexico
关键词
dengue; competitive systems; global stability; threshold; variable population;
D O I
10.1007/s002850050147
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
A model for the transmission of dengue fever with variable human population size is analyzed. We find three threshold parameters which govern the existence of the endemic proportion equilibrium, the increase of the human population size, and the behaviour of the total number of human infectives. We prove the global asymptotic stability of the equilibrium points using the theory of competitive systems, compound matrices, and the center manifold theorem.
引用
收藏
页码:220 / 240
页数:21
相关论文
共 24 条
[1]  
ANON S, 1980, GUIDE DIAGNOSIS TREA
[2]  
Aulbach B., 1984, LECT NOTES MATH, V1058
[3]   ANALYSIS OF A DISEASE TRANSMISSION MODEL IN A POPULATION WITH VARYING SIZE [J].
BUSENBERG, S ;
VANDENDRIESSCHE, P .
JOURNAL OF MATHEMATICAL BIOLOGY, 1990, 28 (03) :257-270
[4]  
BUSENBERG SN, 1991, LECT NOTES PURE APPL, V131, P283
[5]   UNIFORMLY PERSISTENT SYSTEMS [J].
BUTLER, G ;
FREEDMAN, HI ;
WALTMAN, P .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1986, 96 (03) :425-430
[6]  
Carr J, 1982, Applications of centre manifold theory
[7]  
EARL A., 1955, THEORY ORDINARY DIFF
[8]   Analysis of a Dengue disease transmission model [J].
Esteva, L ;
Vargas, C .
MATHEMATICAL BIOSCIENCES, 1998, 150 (02) :131-151
[9]  
ESTEVA L, 1987, THESIS CTR INVESTIGA
[10]  
GALVAN JFM, 1994, MANUAL VIGILANCIA EP