Dynamic optimization of chemical and biochemical processes using restricted second-order information

被引:73
作者
Balsa-Canto, E
Banga, JR
Alonso, AA
Vassiliadis, VS
机构
[1] CSIC, Chem Engn Lab, IIM, Vigo 36208, Spain
[2] Univ Vigo, Dept Chem Engn, Vigo 36200, Spain
[3] Univ Cambridge, Dept Chem Engn, Cambridge CB2 3RA, England
关键词
optimal control; dynamic optimization; chemical processes; biochemical processes; sensitivity analysis;
D O I
10.1016/S0098-1354(01)00633-0
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The extension of a recently developed method for the dynamic optimization of chemical and biochemical processes is presented. This method is based on the control vector parameterization approach and makes use of the calculation of first- and second-order sensitivities to obtain exact gradient and projected Hessian information. In order to achieve high discretization levels of the control variables with a moderate computational cost, a mesh refining technique is also presented here. The robustness and efficiency of this strategy is illustrated with the solution of several challenging case studies. (C) 2001 Elsevier Science Ltd. AII rights reserved.
引用
收藏
页码:539 / 546
页数:8
相关论文
共 31 条
[21]   OPTIMAL PRODUCTION OF SECRETED PROTEIN IN FED-BATCH REACTORS [J].
PARK, S ;
RAMIREZ, WF .
AICHE JOURNAL, 1988, 34 (09) :1550-1558
[22]   EVALUATION OF GRADIENTS FOR PIECEWISE CONSTANT OPTIMAL-CONTROL [J].
ROSEN, O ;
LUUS, R .
COMPUTERS & CHEMICAL ENGINEERING, 1991, 15 (04) :273-281
[23]   OPTIMIZATION OF FED-BATCH PENICILLIN FERMENTATION - A CASE OF SINGULAR OPTIMAL-CONTROL WITH STATE CONSTRAINTS [J].
SAN, KY ;
STEPHANOPOULOS, G .
BIOTECHNOLOGY AND BIOENGINEERING, 1989, 34 (01) :72-78
[24]   A NOTE ON THE OPTIMALITY CRITERIA FOR MAXIMUM BIOMASS PRODUCTION IN A FED-BATCH FERMENTER [J].
SAN, KY ;
STEPHANOPOULOS, G .
BIOTECHNOLOGY AND BIOENGINEERING, 1984, 26 (10) :1261-1264
[25]  
Shioya S., 1992, Modern Biochemical Engineering, P111, DOI DOI 10.1007/BFB0000708
[26]   Obtaining smoother singular arc policies using a modified iterative dynamic programming algorithm [J].
Tholudur, A ;
Ramirez, WF .
INTERNATIONAL JOURNAL OF CONTROL, 1997, 68 (05) :1115-1128
[27]  
VASSILIADIS V, 1993, THESIS U LONDON UK
[28]   Second-order sensitivities of general dynamic systems with application to optimal control problems [J].
Vassiliadis, VS ;
Balsa-Canto, E ;
Banga, JR .
CHEMICAL ENGINEERING SCIENCE, 1999, 54 (17) :3851-3860
[29]   Optimal control and optimal time location problems of differential-algebraic systems by differential evolution [J].
Wang, FS ;
Chiou, JP .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 1997, 36 (12) :5348-5357
[30]  
WRIGHT MH, 1996, NUMERICAL ANAL 1995, P191