Poly(L-lysine)-grafted-poly(ethylene glycol)-based surface-chemical gradients.: Preparation, characterization, and first applications

被引:38
作者
Morgenthaler, Sara [1 ]
Zink, Christian [1 ]
Staedler, Brigitte [2 ]
Voeroes, Janos [2 ]
Lee, Seunghwan [1 ]
Spencer, Nicholas D. [1 ]
Tosatti, Samuele G. P. [1 ]
机构
[1] ETH, Dept Mat, Surface Sci & Technol Lab, CH-8093 Zurich, Switzerland
[2] ETH, Dept Informat Technol & Elect Engn, Inst Biomed Engn, Lab Biosensors & Bioelect, CH-8092 Zurich, Switzerland
来源
BIOINTERPHASES | 2006年 / 1卷 / 04期
关键词
D O I
10.1116/1.2431704
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
A simple dipping process has been used to prepare PEGylated surface gradients from the polycationic polymer poly(L-lysine), grafted with poly(ethylene glycol) (PLL-g-PEG), on metal oxide substrates, such as TiO2 and Nb2O5. PLL-g-PEG coverage gradients were prepared during an initial, controlled immersion and characterized with variable angle spectroscopic ellipsometry and x-ray photoelectron spectroscopy. Gradients with a linear change in thickness and coverage were generated by the use of an immersion program based on an exponential function. These single-component gradients were used to study the adsorption of proteins of different sizes and shapes, namely, albumin, immunoglobulin G, and fibrinogen. The authors have shown that the density and size of defects in the PLL-g-PEG adlayer determine the amount of protein that is adsorbed at a certain adlayer thickness. In a second step, single-component gradients of functionalized PLL-g-PEG were backfilled with nonfunctionalized PLL-g-PEG to generate two-component gradients containing functional groups, such as biotin, in a protein-resistant background. Such gradients were combined with a patterning technique to generate individually addressable spots on a gradient surface. The surfaces generated in this way show promise as a useful and versatile biochemical screening tool and could readily be incorporated into a method for studying the behavior of cells on functionalized surfaces. (c) 2006 American Vacuum Society.
引用
收藏
页码:156 / 165
页数:10
相关论文
共 72 条
[1]   PREVENTION OF PROTEIN ADSORPTION AND PLATELET-ADHESION ON SURFACES BY PEO PPO PEO TRIBLOCK COPOLYMERS [J].
AMIJI, M ;
PARK, K .
BIOMATERIALS, 1992, 13 (10) :682-692
[2]   AXON GUIDANCE BY GRADIENTS OF A TARGET-DERIVED COMPONENT [J].
BAIER, H ;
BONHOEFFER, F .
SCIENCE, 1992, 255 (5043) :472-475
[3]   Peptide-modified p(AAm-co-EG/AAc) IPNs grafted to bulk titanium modulate osteoblast behavior in vitro [J].
Barber, TA ;
Golledge, SL ;
Castner, DG ;
Healy, KE .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2003, 64A (01) :38-47
[4]   P(AAm-co-EG) interpenetrating polymer networks grafted to oxide surfaces: Surface characterization, protein adsorption, and cell detachment studies [J].
Bearinger, JP ;
Castner, DG ;
Golledge, SL ;
Rezania, A ;
Hubchak, S ;
Healy, KE .
LANGMUIR, 1997, 13 (19) :5175-5183
[5]   Formation of gradients of proteins on surfaces with microfluidic networks [J].
Caelen, I ;
Bernard, A ;
Juncker, D ;
Michel, B ;
Heinzelmann, H ;
Delamarche, E .
LANGMUIR, 2000, 16 (24) :9125-9130
[6]   Strong resistance of oligo(phosphorylcholine) self-assembled monolayers to protein adsorption [J].
Chen, SF ;
Liu, LY ;
Jiang, SY .
LANGMUIR, 2006, 22 (06) :2418-2421
[7]   Protein resistance of titanium oxide surfaces modified by biologically inspired mPEG-DOPA [J].
Dalsin, JL ;
Lin, LJ ;
Tosatti, S ;
Vörös, J ;
Textor, M ;
Messersmith, PB .
LANGMUIR, 2005, 21 (02) :640-646
[8]   ELLIPSOMETRY AS A TOOL TO STUDY ADSORPTION BEHAVIOR OF SYNTHETIC AND BIOPOLYMERS AT AIR-WATER-INTERFACE [J].
DEFEIJTER, JA ;
BENJAMINS, J ;
VEER, FA .
BIOPOLYMERS, 1978, 17 (07) :1759-1772
[9]   Gradients of substrate-bound laminin orient axonal specification of neurons [J].
Dertinger, SKW ;
Jiang, XY ;
Li, ZY ;
Murthy, VN ;
Whitesides, GM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (20) :12542-12547
[10]   AXON GUIDANCE AND THE PATTERNING OF NEURONAL PROJECTIONS IN VERTEBRATES [J].
DODD, J ;
JESSELL, TM .
SCIENCE, 1988, 242 (4879) :692-699