Hidden convexity In some nonconvex quadratically constrained quadratic programming

被引:108
作者
BenTal, A
Teboulle, M
机构
[1] TEL AVIV UNIV, SCH MATH SCI, DEPT STAT & OPERAT RES, IL-69978 RAMAT AVIV, ISRAEL
[2] TECHNION ISRAEL INST TECHNOL, FAC IND ENGN & MANAGEMENT, IL-32000 HAIFA, ISRAEL
基金
美国国家科学基金会;
关键词
indefinite quadratic problems; nonconvex optimization; duality;
D O I
10.1007/BF02592331
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We consider the problem of minimizing an indefinite quadratic objective function subject to two-sided indefinite quadratic constraints. Under a suitable simultaneous diagonalization assumption (which trivially holds for trust region type problems), we prove that the original problem is equivalent to a convex minimization problem with simple linear constraints. We then consider a special problem of minimizing a concave quadratic function subject to finitely many convex quadratic constraints, which is also shown to be equivalent to a minimax convex problem. Tn both cases we derive the explicit nonlinear transformations which allow for recovering the optimal solution of the nonconvex problems via their equivalent convex counterparts. Special cases and applications are also discussed. We outline interior-point polynomial-time algorithms for the solution of the equivalent convex programs.
引用
收藏
页码:51 / 63
页数:13
相关论文
共 17 条
[1]  
ACHTZIGER W, 1993, NATO ADV SCI INST SE, V227, P43
[2]  
BENTAL A, 1992, 392 ISR I TECHN OPT
[3]  
EISENBERG E, 1961, P AM MATH SOC, V12, P783
[4]  
Finsler P., 1936, Comment. Math. Helv, V9, P188, DOI [10.1007/BF01258188, DOI 10.1007/BF01258188]
[5]  
Fletcher R., 1981, PRACTICAL METHODS OP
[6]  
FLIPPO OE, 1992, 9265 TU DELFT
[7]  
GANDER W, 1981, NUMER MATH, V36, P291, DOI 10.1007/BF01396656
[8]   COMPUTING OPTIMAL LOCALLY CONSTRAINED STEPS [J].
GAY, DM .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1981, 2 (02) :186-197
[9]   QUADRATICALLY CONSTRAINED LEAST-SQUARES AND QUADRATIC PROBLEMS [J].
GOLUB, GH ;
VONMATT, U .
NUMERISCHE MATHEMATIK, 1991, 59 (06) :561-580
[10]  
Horn R. A., 1986, Matrix analysis