Induction and repair of DNA double strand breaks: The increasing spectrum of non-homologous end joining pathways

被引:289
作者
Mladenov, Emil [1 ]
Iliakis, George [1 ]
机构
[1] Univ Duisburg Essen Med Sch, Inst Med Radiat Biol, D-45122 Essen, Germany
关键词
DNA repair; Non-homologous end joining (NHEJ); DNA double strand breaks (DSBs); Ionizing radiation (IR); DEPENDENT PROTEIN-KINASE; CLASS SWITCH RECOMBINATION; HEAT-LABILE SITES; DAMAGE CHECKPOINT ACTIVATION; HOMOLOGOUS RECOMBINATION; LIGASE-IV; V(D)J RECOMBINATION; CELLS DEFICIENT; BACKUP PATHWAYS; PHOSPHORYLATION SITES;
D O I
10.1016/j.mrfmmm.2011.02.005
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
A defining characteristic of damage induced in the DNA by ionizing radiation (IR) is its clustered character that leads to the formation of complex lesions challenging the cellular repair mechanisms. The most widely investigated such complex lesion is the DNA double strand break (DSB). DSBs undermine chromatin stability and challenge the repair machinery because an intact template strand is lacking to assist restoration of integrity and sequence in the DNA molecule. Therefore, cells have evolved a sophisticated machinery to detect DSBs and coordinate a response on the basis of inputs from various sources. A central function of cellular responses to DSBs is the coordination of DSB repair. Two conceptually different mechanisms can in principle remove DSBs from the genome of cells of higher eukaryotes. Homologous recombination repair (HRR) uses as template a homologous DNA molecule and is therefore error-free; it functions preferentially in the S and G2 phases. Non-homologous end joining (NHEJ), on the other hand, simply restores DNA integrity by joining the two ends, is error prone as sequence is only fortuitously preserved and active throughout the cell cycle. The basis of DSB repair pathway choice remains unknown, but cells of higher eukaryotes appear programmed to utilize preferentially NHEJ. Recent work suggests that when the canonical DNA-PK dependent pathway of NHEJ (D-NHEJ), becomes compromised an alternative NHEJ pathway and not HRR substitutes in a quasi-backup function (B-NHEJ). Here, we outline aspects of DSB induction by IR and review the mechanisms of their processing in cells of higher eukaryotes. We place particular emphasis on backup pathways of NHEJ and summarize their increasing significance in various cellular processes, as well as their potential contribution to carcinogenesis. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:61 / 72
页数:12
相关论文
共 159 条
[1]   DNA double-strand break repair and chromosome translocations [J].
Agarwal, Sheba ;
Tafel, Agnieszka A. ;
Kanaar, Roland .
DNA REPAIR, 2006, 5 (9-10) :1075-1081
[2]   XLF interacts with the XRCC4-DNA ligase IV complex to promote DNA nonhomologous end-joining [J].
Ahnesorg, P ;
Smith, P ;
Jackson, SP .
CELL, 2006, 124 (02) :301-313
[3]   Phosphorylation and rapid relocalization of 53BP1 to nuclear foci upon DNA damage [J].
Anderson, L ;
Henderson, C ;
Adachi, Y .
MOLECULAR AND CELLULAR BIOLOGY, 2001, 21 (05) :1719-1729
[4]   The CDK regulates repair of double-strand breaks by homologous recombination during the cell cycle [J].
Aylon, Y ;
Liefshitz, B ;
Kupiec, M .
EMBO JOURNAL, 2004, 23 (24) :4868-4875
[5]   Alternative-NHEJ Is a Mechanistically Distinct Pathway of Mammalian Chromosome Break Repair [J].
Bennardo, Nicole ;
Cheng, Anita ;
Huang, Nick ;
Stark, Jeremy M. .
PLOS GENETICS, 2008, 4 (06)
[6]   ATM and Artemis promote homologous recombination of radiation-induced DNA double-strand breaks in G2 [J].
Beucher, Andrea ;
Birraux, Julie ;
Tchouandong, Leopoldine ;
Barton, Olivia ;
Shibata, Atsushi ;
Conrad, Sandro ;
Goodarzi, Aaron A. ;
Krempler, Andrea ;
Jeggo, Penny A. ;
Loebrich, Markus .
EMBO JOURNAL, 2009, 28 (21) :3413-3427
[7]  
Blakely W.F., 1987, ANN RAD RES SOC M, P1
[8]   Alternative end-joining catalyzes robust IgH locus deletions and translocations in the combined absence of ligase 4 and Ku70 [J].
Boboila, Cristian ;
Jankovic, Mila ;
Yan, Catherine T. ;
Wang, Jing H. ;
Wesemann, Duane R. ;
Zhang, Tingting ;
Fazeli, Alex ;
Feldman, Lauren ;
Nussenzweig, Andre ;
Nussenzweig, Michel ;
Alt, Frederick W. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (07) :3034-3039
[9]   Alternative end-joining catalyzes class switch recombination in the absence of both Ku70 and DNA ligase 4 [J].
Boboila, Cristian ;
Yan, Catherine ;
Wesemann, Duane R. ;
Jankovic, Mila ;
Wang, Jing H. ;
Manis, John ;
Nussenzweig, Andre ;
Nussenzweig, Michel ;
Alt, Frederick W. .
JOURNAL OF EXPERIMENTAL MEDICINE, 2010, 207 (02) :417-427
[10]   Identification of a Saccharomyces cerevisiae Ku80 homologue: Roles in DNA double strand break rejoining and in telomeric maintenance [J].
Boulton, SJ ;
Jackson, SP .
NUCLEIC ACIDS RESEARCH, 1996, 24 (23) :4639-4648