AUTOMATED DIAGNOSIS OF NORMAL AND ALCOHOLIC EEG SIGNALS

被引:102
作者
Acharya, U. Rajendra [1 ]
Sree, S. Vinitha
Chattopadhyay, Subhagata [2 ]
Suri, Jasjit S. [3 ]
机构
[1] Ngee Ann Polytech, Dept Elect & Comp Engn, Singapore 599489, Singapore
[2] Natl Inst Sci & Technol, Dept Comp Sci & Engn, Berhampur, Orissa, India
[3] Idaho State Univ, Dept Biomed Engn, Pocatello, ID 83209 USA
关键词
Electroencephalogram; alcohol; nonlinear analysis; automated diagnosis; lyapunov exponent; higher order spectra; support vector machine; NEURAL NETWORK METHODOLOGY; APPROXIMATE ENTROPY; TIME-SERIES; IDENTIFICATION; EPILEPSY; ELECTROENCEPHALOGRAM; QUANTIFICATION; CLASSIFICATION; BIOFEEDBACK; SYSTEM;
D O I
10.1142/S0129065712500116
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Electroencephalogram (EEG) signals, which record the electrical activity in the brain, are useful for assessing the mental state of a person. Since these signals are nonlinear and non-stationary in nature, it is very difficult to decipher the useful information from them using conventional statistical and frequency domain methods. Hence, the application of nonlinear time series analysis to EEG signals could be useful to study the dynamical nature and variability of the brain signals. In this paper, we propose a Computer Aided Diagnostic (CAD) technique for the automated identification of normal and alcoholic EEG signals using nonlinear features. We first extract nonlinear features such as Approximate Entropy (ApEn), Largest Lyapunov Exponent (LLE), Sample Entropy (SampEn), and four other Higher Order Spectra (HOS) features, and then use them to train Support Vector Machine (SVM) classifier of varying kernel functions: 1st, 2nd, and 3rd order polynomials and a Radial basis function (RBF) kernel. Our results indicate that these nonlinear measures are good discriminators of normal and alcoholic EEG signals. The SVM classifier with a polynomial kernel of order 1 could distinguish the two classes with an accuracy of 91.7%, sensitivity of 90% and specificity of 93.3%. As a pre-analysis step, the EEG signals were tested for nonlinearity using surrogate data analysis and we found that there was a significant difference in the LLE measure of the actual data and the surrogate data.
引用
收藏
页数:11
相关论文
共 59 条
[1]   Non-linear analysis of EEG signals at various sleep stages [J].
Acharya, R ;
Faust, O ;
Kannathal, N ;
Chua, T ;
Laxminarayan, S .
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2005, 80 (01) :37-45
[2]   APPLICATION OF RECURRENCE QUANTIFICATION ANALYSIS FOR THE AUTOMATED IDENTIFICATION OF EPILEPTIC EEG SIGNALS [J].
Acharya, U. Rajendra ;
Sree, Vinitha S. ;
Chattopadhyay, Subhagata ;
Yu, Wenwei ;
Alvin, Ang Peng Chuan .
INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 2011, 21 (03) :199-211
[3]   ANALYSIS AND AUTOMATIC IDENTIFICATION OF SLEEP STAGES USING HIGHER ORDER SPECTRA [J].
Acharya U, Rajendra ;
Chua, Eric Chern-Pin ;
Chua, Kuang Chua ;
Min, Lim Choo ;
Tamura, Toshiyo .
INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 2010, 20 (06) :509-521
[4]  
Adeli H, 2010, AUTOMATED EEG-BASED DIAGNOSIS OF NEUROLOGICAL DISORDERS: INVENTING THE FUTURE OF NEUROLOGY, P1
[5]   A spatio-temporal wavelet-chaos methodology for EEG-based diagnosis of Alzheimer's disease [J].
Adeli, Hojjat ;
Ghosh-Dastidar, Samanwoy ;
Dadmehr, Nahid .
NEUROSCIENCE LETTERS, 2008, 444 (02) :190-194
[6]   Fuzzy Synchronization Likelihood with Application to Attention-Deficit/Hyperactivity Disorder [J].
Ahmadlou, Mehran ;
Adeli, Hojjat .
CLINICAL EEG AND NEUROSCIENCE, 2011, 42 (01) :6-13
[7]   Fractality and a Wavelet-chaos-Methodology for EEG-based Diagnosis of Alzheimer Disease [J].
Ahmadlou, Mehran ;
Adeli, Hojjat ;
Adeli, Anahita .
ALZHEIMER DISEASE & ASSOCIATED DISORDERS, 2011, 25 (01) :85-92
[8]   Fractality and a Wavelet-Chaos-Neural Network Methodology for EEG-Based Diagnosis of Autistic Spectrum Disorder [J].
Ahmadlou, Mehran ;
Adeli, Hojjat ;
Adeli, Amir .
JOURNAL OF CLINICAL NEUROPHYSIOLOGY, 2010, 27 (05) :328-333
[9]   New diagnostic EEG markers of the Alzheimer's disease using visibility graph [J].
Ahmadlou, Mehran ;
Adeli, Hojjat ;
Adeli, Anahita .
JOURNAL OF NEURAL TRANSMISSION, 2010, 117 (09) :1099-1109
[10]   Wavelet-Synchronization Methodology: A New Approach for EEG-Based Diagnosis of ADHD [J].
Ahmadlou, Mehran ;
Adeli, Hojjat .
CLINICAL EEG AND NEUROSCIENCE, 2010, 41 (01) :1-10