Production of the tubulin destabilizer disorazol in Sorangium cellulosum:: Biosynthetic machinery and regulatory genes

被引:63
作者
Kopp, M
Irschik, H
Pradella, S
Müller, R
机构
[1] Univ Saarland, D-66123 Saarbrucken, Germany
[2] German Res Ctr Biotechnol, Dept Biol Nat Prod, Dept Mol Biol Myxobacteria, D-38124 Braunschweig, Germany
关键词
biosynthesis; natural products; polyketides; transferases; tubulin;
D O I
10.1002/cbic.200400459
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Myxobacteria show a high potential for the production of natural compounds that exhibit a wide variety of antibiotic, antifungal, and cytotoxic activities.([1,2]) The genus Sorangium is of special biotechnological interest because it produces almost half of the secondary metabolites isolated from these microorganisms. We describe a transposon-mutogenesis approach to identifying the disorozol biosynthetic gene cluster in Sorangium cellulosum So ce12, a producer of multiple natural products. In addition to the highly effective disorazol-type tubulin destabilizers,([3-5]) S. cellulosum So ce12 produces sorongicins, potent eubacterial RNA polymerase inhibitors,([6]) bactericidal sorangiolides, and the antifungal chivosozoles.([7,8]) To obtain a transposon library of sufficient size suitable for the identification of the presumed biosynthetic gene clusters, an efficient transformation method was developed. We present here the first electroporation protocol for a strain of the genus Sorangium. The transposon library was screened for disorazol-negative mutants. This approach led to the identification of the corresponding trans-acyltransferase core biosynthetic gene cluster together with a region in the chromosome that is likely to be involved in disorazol biosynthesis. A third region in the genome harbors another gene that is presumed to be involved in the regulation of disorazol production. A detailed analysis of the biosynthetic and regulatory genes is presented in this paper.
引用
收藏
页码:1277 / 1286
页数:10
相关论文
共 71 条
[41]   Don't classify polyketide synthases [J].
Müller, R .
CHEMISTRY & BIOLOGY, 2004, 11 (01) :4-6
[42]  
NIERMAN WC, 2005, UNPUB
[43]   An improved approach for construction of bacterial artificial chromosome libraries [J].
Osoegawa, K ;
Woon, PY ;
Zhao, BH ;
Frengen, E ;
Tateno, M ;
Catanese, JJ ;
de Jong, PJ .
GENOMICS, 1998, 52 (01) :1-8
[44]   The first gene in the biosynthesis of the polyketide antibiotic TA of Myxococcus xanthus codes for a unique PKS module coupled to a peptide synthetase [J].
Paitan, Y ;
Alon, G ;
Orr, E ;
Ron, EZ ;
Rosenberg, E .
JOURNAL OF MOLECULAR BIOLOGY, 1999, 286 (02) :465-474
[45]   Unprecedented diversity of catalytic domains in the first four modules of the putative pederin polyketide synthase [J].
Piel, J ;
Wen, GP ;
Platzer, M ;
Hui, DQ .
CHEMBIOCHEM, 2004, 5 (01) :93-98
[46]   A polyketide synthase-peptide synthetase gene cluster from an uncultured bacterial symbiont of Paederus beetles [J].
Piel, J .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (22) :14002-14007
[47]   Antitumor polyketide biosynthesis by an uncultivated bacterial symbiont of the marine sponge Theonella swinhoei [J].
Piel, J ;
Hui, DQ ;
Wen, GP ;
Butzke, D ;
Platzer, M ;
Fusetani, N ;
Matsunaga, S .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (46) :16222-16227
[48]   Characterisation, genome size and genetic manipulation of the myxobacterium Sorangium cellulosum So ce56 [J].
Pradella, S ;
Hans, A ;
Spröer, C ;
Reichenbach, H ;
Gerth, K ;
Beyer, S .
ARCHIVES OF MICROBIOLOGY, 2002, 178 (06) :484-492
[49]  
Reichenbach H, 2000, SPR DESKT EDIT CHEM, P149
[50]   A model of structure and catalysis for ketoreductase domains in modular polyketide synthases [J].
Reid, R ;
Piagentini, M ;
Rodriguez, E ;
Ashley, G ;
Viswanathan, N ;
Carney, J ;
Santi, DV ;
Hutchinson, CR ;
McDaniel, R .
BIOCHEMISTRY, 2003, 42 (01) :72-79