Synthesis of entanglement structure in nanosized Li4Ti5O12/multi-walled carbon nanotubes composite anode material for Li-ion batteries by ball-milling-assisted solid-state reaction

被引:65
作者
Jhan, Yi Ruei [1 ]
Duh, Jenq Gong [1 ]
机构
[1] Natl Tsing Hua Univ, Dept Mat Sci & Engn, Hsinchu, Taiwan
关键词
Lithium titanate; Carbon nanotube; High rate capability; Lithium-ion battery; Anode materials; ELECTROCHEMICAL PROPERTIES; TITANIUM-SPINEL; GEL PROCESS; LITHIUM; ELECTRODE; PERFORMANCE; BEHAVIOR;
D O I
10.1016/j.jpowsour.2011.09.063
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Solid-state reactions are used for synthesizing Li4Ti5O12 (LTO) of high purity and crystallinity. However, it is not easy to control the particle size of LTO in these reactions. In this study, an entanglement structure for an LTO/multi-walled carbon nanotube (MWCNT) composite is prepared by a ball-milling-assisted solid-state reaction. The LTO nanoparticles are confined in the interspace of the MWCNT matrix via this architecture control. The additive of MWCNTs can prevent the aggregation of LTO particles during the calcination process of the solid-state reaction. In addition, the entanglement of the MWCNTs and LTO creates an effective conductive network, which improves the conductivity of LTO. Therefore, the entanglement structure improves the electrochemical properties of LTO, such as the rate capability and cycle performance. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:294 / 297
页数:4
相关论文
共 22 条
[1]   Electrochemical behavior of a lithium titanium spinel compound synthesized via a sol-gel process [J].
Bach, S ;
Pereira-Ramos, JP ;
Baffier, N .
JOURNAL OF MATERIALS CHEMISTRY, 1998, 8 (01) :251-253
[2]   General synthesis of carbon-coated nanostructure Li4Ti5O12 as a high rate electrode material for Li-ion intercalation [J].
Cheng, Liang ;
Yan, Jing ;
Zhu, Guan-Nan ;
Luo, Jia-Yan ;
Wang, Cong-Xiao ;
Xia, Yong-Yao .
JOURNAL OF MATERIALS CHEMISTRY, 2010, 20 (03) :595-602
[3]   Carbon nanocoatings on active materials for Li-ion batteries [J].
Dominko, R. ;
Gaberscek, M. ;
Bele, A. ;
Mihailovic, D. ;
Jamnik, J. .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2007, 27 (2-3) :909-913
[4]   SPINEL ANODES FOR LITHIUM-ION BATTERIES [J].
FERG, E ;
GUMMOW, RJ ;
DEKOCK, A ;
THACKERAY, MM .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1994, 141 (11) :L147-L150
[5]   Nano electronically conductive titanium-spinel as lithium ion storage negative electrode [J].
Guerfi, A ;
Charest, P ;
Kinoshita, K ;
Perrier, M ;
Zaghib, K .
JOURNAL OF POWER SOURCES, 2004, 126 (1-2) :163-168
[6]   Electrochemical lithiation and de-lithiation of MWNT-Sn/SnNi nanocomposites [J].
Guo, ZP ;
Zhao, ZW ;
Liu, HK ;
Dou, SX .
CARBON, 2005, 43 (07) :1392-1399
[7]   Synthesis and characterization of spinel Li4Ti5O12 anode material by oxalic acid-assisted sol-gel method [J].
Hao, Yan-Jing ;
Lai, Qiong-Yu ;
Lu, Ji-Zheng ;
Wang, Hong-Li ;
Chen, Yuan-Duan ;
Ji, Xiao-Yang .
JOURNAL OF POWER SOURCES, 2006, 158 (02) :1358-1364
[8]   Synthesis of confinement structure of Sn/C-C (MWCNTs) composite anode materials for lithium ion battery by carbothermal reduction [J].
Jhan, Yi-Ruei ;
Duh, Jenq-Gong ;
Tsai, Su-Yueh .
DIAMOND AND RELATED MATERIALS, 2011, 20 (03) :413-417
[9]   Microscale spherical carbon-coated Li4Ti5O12 as ultra high power anode material for lithium batteries [J].
Jung, Hun-Gi ;
Myung, Seung-Taek ;
Yoon, Chong Seung ;
Son, Seoung-Bum ;
Oh, Kyu Hwan ;
Amine, Khalil ;
Scrosati, Bruno ;
Sun, Yang-Kook .
ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (04) :1345-1351
[10]   Fabrication of single-walled carbon nanotube/tin nanoparticle composites by electrochemical reduction combined with vacuum filtration and hybrid co-filtration for high-performance lithium battery electrodes [J].
Lee, Jae Hyun ;
Kong, Byung-Seon ;
Yang, Seung Bo ;
Jung, Hee-Tae .
JOURNAL OF POWER SOURCES, 2009, 194 (01) :520-525