The solution of a conjecture of Stanley and Wilf for all layered patterns

被引:18
作者
Bóna, M [1 ]
机构
[1] Univ Quebec, LACIM, Montreal, PQ H3C 3P8, Canada
关键词
D O I
10.1006/jcta.1998.2908
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Proving a conjecture of Wilf and Stanley in hitherto the most general case, we show that for any layered pattern q there is a constant c so that q is avoided by less than c(n) permutations of lenght n. This will imply the solution of this conjecture fur at least 2(k) patterns of length k, for any k. (C) 1999 Academic Press.
引用
收藏
页码:96 / 104
页数:9
相关论文
共 12 条
[1]  
BABSON E, UNPUB PERMUTATIONS 1
[2]   Permutations avoiding certain patterns: The case of length 4 and some generalizations [J].
Bona, M .
DISCRETE MATHEMATICS, 1997, 175 (1-3) :55-67
[3]   Exact enumeration of 1342-avoiding permutations: A close link with labeled trees and planar maps [J].
Bona, M .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1997, 80 (02) :257-272
[4]  
BONA M, 1997, THESIS MIT
[5]  
BOSE P, 1993, P 3 WORKSH ALG DAT S
[6]  
Price A. L., 1997, THESIS U PENNSYLVANI
[7]   ASYMPTOTIC VALUES FOR DEGREES ASSOCIATED WITH STRIPS OF YOUNG-DIAGRAMS [J].
REGEV, A .
ADVANCES IN MATHEMATICS, 1981, 41 (02) :115-136
[8]  
Simion R., 1985, European J. Combin., V6, P383, DOI 10.1016/S0195-6698(85)80052-4
[9]   FORBIDDEN SUBSEQUENCES [J].
STANKOVA, ZE .
DISCRETE MATHEMATICS, 1994, 132 (1-3) :291-316
[10]  
WEST J, WILF EQUIVALENCE SIN