A benchmark for non-covalent interactions in solids

被引:292
作者
Otero-de-la-Roza, A. [1 ]
Johnson, Erin R. [1 ]
机构
[1] Univ Calif Merced, Sch Nat Sci, Merced, CA 95343 USA
关键词
DENSITY-FUNCTIONAL THEORY; DER-WAALS INTERACTIONS; HOLE DIPOLE-MOMENT; GENERALIZED GRADIENT APPROXIMATION; HARTREE-FOCK MODEL; RARE-GAS ATOMS; INTERACTION ENERGIES; INTERMOLECULAR INTERACTIONS; DISPERSION INTERACTION; MOLECULAR-CRYSTALS;
D O I
10.1063/1.4738961
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A benchmark for non-covalent interactions in solids (C21) based on the experimental sublimation enthalpies and geometries of 21 molecular crystals is presented. Thermal and zero-point effects are carefully accounted for and reference lattice energies and thermal pressures are provided, which allow dispersion-corrected density functionals to be assessed in a straightforward way. Other thermal corrections to the sublimation enthalpy (the 2RT term) are reexamined. We compare the recently implemented exchange-hole dipole moment (XDM) model with other approaches in the literature to find that XDM roughly doubles the accuracy of DFT-D2 and non-local functionals in computed lattice energies (4.8 kJ/mol mean absolute error) while, at the same time, predicting cell geometries within less than 2% of the experimental result on average. The XDM model of dispersion interactions is confirmed as a very promising approach in solid-state applications. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4738961]
引用
收藏
页数:10
相关论文
共 80 条
[31]   Van der Waals density functional for general geometries -: art. no. 246401 [J].
Dion, M ;
Rydberg, H ;
Schröder, E ;
Langreth, DC ;
Lundqvist, BI .
PHYSICAL REVIEW LETTERS, 2004, 92 (24) :246401-1
[32]   Calculation of dispersion energies [J].
Dobson, John F. ;
Gould, Tim .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2012, 24 (07)
[33]   Predicting lattice energy of organic crystals by density functional theory with empirically corrected dispersion energy [J].
Feng, SX ;
Li, TL .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2006, 2 (01) :149-156
[34]  
Frisch M. J., 2016, Gaussian 03 Revision B.03
[35]  
Gavezzotti A., 2007, Molecular Aggregation: Structure Analysis and Molecular Simulation of Crystals and Liquids, V19
[36]   QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials [J].
Giannozzi, Paolo ;
Baroni, Stefano ;
Bonini, Nicola ;
Calandra, Matteo ;
Car, Roberto ;
Cavazzoni, Carlo ;
Ceresoli, Davide ;
Chiarotti, Guido L. ;
Cococcioni, Matteo ;
Dabo, Ismaila ;
Dal Corso, Andrea ;
de Gironcoli, Stefano ;
Fabris, Stefano ;
Fratesi, Guido ;
Gebauer, Ralph ;
Gerstmann, Uwe ;
Gougoussis, Christos ;
Kokalj, Anton ;
Lazzeri, Michele ;
Martin-Samos, Layla ;
Marzari, Nicola ;
Mauri, Francesco ;
Mazzarello, Riccardo ;
Paolini, Stefano ;
Pasquarello, Alfredo ;
Paulatto, Lorenzo ;
Sbraccia, Carlo ;
Scandolo, Sandro ;
Sclauzero, Gabriele ;
Seitsonen, Ari P. ;
Smogunov, Alexander ;
Umari, Paolo ;
Wentzcovitch, Renata M. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2009, 21 (39)
[37]   Comparative Study of Selected Wave Function and Density Functional Methods for Noncovalent Interaction Energy Calculations Using the Extended S22 Data Set [J].
Grafova, Lucie ;
Pitonak, Michal ;
Rezac, Jan ;
Hobza, Pavel .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2010, 6 (08) :2365-2376
[38]   Accurate description of van der Waals complexes by density functional theory including empirical corrections [J].
Grimme, S .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2004, 25 (12) :1463-1473
[39]   Semiempirical GGA-type density functional constructed with a long-range dispersion correction [J].
Grimme, Stefan .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2006, 27 (15) :1787-1799
[40]   Density functional theory with London dispersion corrections [J].
Grimme, Stefan .
WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE, 2011, 1 (02) :211-228