Formation and spreading of lipid bilayers on planar glass supports
被引:615
作者:
Cremer, PS
论文数: 0引用数: 0
h-index: 0
机构:
Stanford Univ, Dept Chem, Stanford, CA 94305 USAStanford Univ, Dept Chem, Stanford, CA 94305 USA
Cremer, PS
[1
]
Boxer, SG
论文数: 0引用数: 0
h-index: 0
机构:
Stanford Univ, Dept Chem, Stanford, CA 94305 USAStanford Univ, Dept Chem, Stanford, CA 94305 USA
Boxer, SG
[1
]
机构:
[1] Stanford Univ, Dept Chem, Stanford, CA 94305 USA
来源:
JOURNAL OF PHYSICAL CHEMISTRY B
|
1999年
/
103卷
/
13期
关键词:
D O I:
10.1021/jp983996x
中图分类号:
O64 [物理化学(理论化学)、化学物理学];
学科分类号:
070304 ;
081704 ;
摘要:
The fusion and spreading of phospholipid bilayers on glass surfaces was investigated as a function of pH and ionic strength. Membrane fusion to the support was favorable at high ionic strength and low pH for vesicles containing a net negative charge; however, neutral and positively charged vesicles fused under all conditions attempted. This result suggests that van der Waals and electrostatic interactions govern the fusion process. Membrane spreading over a planar surface was favorable at low pH regardless of the net charge on the bilayer, and the process is driven by van der Waals forces. On the other hand membrane propagation is impeded at high pH or on highly curved surfaces. In this case a combination of hydration and bending interactions is primarily responsible for arresting the spreading process. These results provide a framework for understanding many of the factors that influence the effectiveness of scratches on planar supported bilayers as barriers to lateral diffusion and lead to a simple method to heal these scratches.