Multifractal analysis of the Portevin-Le Chatelier effect:: General approach and application to AlMg and AlMg/Al2O3 alloys

被引:50
作者
Lebyodkin, MA [1 ]
Estrin, Y [1 ]
机构
[1] Tech Univ Clausthal, Inst Werkstoffkunde & Werkstofftech, D-38678 Clausthal Zellerfeld, Germany
基金
俄罗斯基础研究基金会;
关键词
Portevin-Le Chatelier effect; aluminum alloys; tension test; self-organization and patterning; multifractal analysis;
D O I
10.1016/j.actamat.2005.03.042
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Recent studies of the Portevin-Le Chatelier (PLC) effect bear evidence that serrated deformation curves characteristic of unstable plastic flow may exhibit temporal features that reflect complex spatio-temporal patterns arising due to the collective nature of dislocation dynamics. We investigate the possibility of studying plastic instability within a general framework provided by multifractal analysis of deformation curves. The effect is studied on a classical Al-3%Mg alloy as a base material, as well as its composite modification produced by addition of Al2O3 dispersion particles. It is shown that using multifractal analysis, changes in the temporal structure of the deformation curves, which result from variation of the experimental conditions and/or addition of second-phase particles, can be quantified. Thus, this technique provides an additional tool for a comparison between experiment and theoretical models of the PLC effect on a quantitative basis. (c) 2005 Published by Elsevier Ltd on behalf of Acta Materialia Inc.
引用
收藏
页码:3403 / 3413
页数:11
相关论文
共 36 条
[21]  
Kubin LP, 2002, DISLOCATIONS IN SOLIDS, VOL 11, P101, DOI 10.1016/S1572-4859(02)80008-0
[22]   Statistical behaviour and strain localization patterns in the Portevin-Le Chatelier effect [J].
Lebyodkin, M ;
Brechet, Y ;
Estrin, Y ;
Kubin, L .
ACTA MATERIALIA, 1996, 44 (11) :4531-4541
[23]   Spatio-temporal dynamics of the Portevin-Le Chatelier effect:: Experiment and modelling [J].
Lebyodkin, M ;
Dunin-Barkowskii, L ;
Bréchet, Y ;
Estrin, Y ;
Kubin, LP .
ACTA MATERIALIA, 2000, 48 (10) :2529-2541
[24]   STATISTICS OF THE CATASTROPHIC SLIP EVENTS IN THE PORTEVIN-LE CHATELIER EFFECT [J].
LEBYODKIN, MA ;
BRECHET, Y ;
ESTRIN, Y ;
KUBIN, LP .
PHYSICAL REVIEW LETTERS, 1995, 74 (23) :4758-4761
[25]   2 REPRESENTATIONS IN MULTIFRACTAL ANALYSIS [J].
MACH, J ;
MAS, F ;
SAGUES, F .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1995, 28 (19) :5607-5622
[26]   Scaling range and cutoffs in empirical fractals [J].
Malcai, O ;
Lidar, DA ;
Biham, O ;
Avnir, D .
PHYSICAL REVIEW E, 1997, 56 (03) :2817-2828
[27]  
Mandelbrot B., 1977, Fractals: Form, Chance and Dimension
[28]  
Nicolis G., 1977, SELF ORG NONEQUILIBR
[29]   On the Portevin-Le Chatelier effect:: theoretical modeling and numerical results [J].
Rizzi, E ;
Hähner, P .
INTERNATIONAL JOURNAL OF PLASTICITY, 2004, 20 (01) :121-165
[30]  
Rodriguez P., 1995, SOLID STATE PHENOM, V42-43, P257, DOI [10.4028/www.scientific.net/SSP.42-43.257, DOI 10.4028/WWW.SCIENTIFIC.NET/SSP.42-43.257]