DNA double-strand breaks: signaling, repair and the cancer connection

被引:1896
作者
Khanna, KK
Jackson, SP
机构
[1] Univ Queensland, Queensland Inst Med Res, Brisbane, Qld, Australia
[2] Univ Queensland, Dept Pathol, Brisbane, Qld, Australia
[3] Wellcome Trust & Canc Res Campaign Inst Canc & De, Cambridge, England
[4] Univ Cambridge, Dept Zool, Cambridge, England
基金
英国医学研究理事会;
关键词
D O I
10.1038/85798
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
To ensure the high-fidelity transmission of genetic information, cells have evolved mechanisms to monitor genome integrity. Cells respond to DNA damage by activating a complex DNA-damage-response pathway that includes cell-cycle arrest, the transcriptional and post-transcriptional activation of a subset of genes including those associated with DNA repair, and, under some circumstances, the triggering of programmed cell death. An inability to respond properly to, or to repair, DNA damage leads to genetic instability, which in turn may enhance the rate of cancer development. Indeed, it is becoming increasingly clear that deficiencies in DNA-damage signaling and repair pathways are fundamental to the etiology of most, if not all, human cancers. Here we describe recent progress in our understanding of how cells detect and signal the presence and repair of one particularly important form of DNA damage induced by ionizing radiation-the DNA double-strand break (DSB). Moreover, we discuss how tumor suppressor proteins such as p53, ATM, Brca1 and Brca2 have been linked to such pathways, and how accumulating evidence is connecting deficiencies in cellular responses to DNA DSBs with tumorigenesis.
引用
收藏
页码:247 / 254
页数:8
相关论文
共 76 条
  • [1] Barlow C, 1998, DEVELOPMENT, V125, P4007
  • [2] DNA repair protein Rad55 is a terminal substrate of the DNA damage checkpoints
    Bashkirov, VI
    King, JS
    Bashkirova, EV
    Schmuckli-Maurer, J
    Heyer, WD
    [J]. MOLECULAR AND CELLULAR BIOLOGY, 2000, 20 (12) : 4393 - 4404
  • [3] Heterozygous germ line hCHK2 mutations in Li-Fraumeni syndrome
    Bell, DW
    Varley, JM
    Szydlo, TE
    Kang, DH
    Wahrer, DCR
    Shannon, KE
    Lubratovich, M
    Verselis, SJ
    Isselbacher, KJ
    Fraumeni, JF
    Birch, JM
    Li, FP
    Garber, JE
    Haber, DA
    [J]. SCIENCE, 1999, 286 (5449) : 2528 - 2531
  • [4] Bishop AJR, 2000, CANCER RES, V60, P395
  • [5] BRCA1 is associated with a human SWI/SNF-related complex: Linking chromatin remodeling to breast cancer
    Bochar, DA
    Wang, L
    Beniya, H
    Kinev, A
    Xue, YT
    Lane, WS
    Wang, WD
    Kashanchi, F
    Shiekhattar, R
    [J]. CELL, 2000, 102 (02) : 257 - 265
  • [6] A superfamily of conserved domains in DNA damage responsive cell cycle checkpoint proteins
    Bork, P
    Hofmann, K
    Bucher, P
    Neuwald, AF
    Altschul, SF
    Koonin, EV
    [J]. FASEB JOURNAL, 1997, 11 (01) : 68 - 76
  • [7] Brown EJ, 2000, GENE DEV, V14, P397
  • [8] The hMre11/hRad50 protein complex and Nijmegen breakage syndrome: Linkage of double-strand break repair to the cellular DNA damage response
    Carney, JP
    Maser, RS
    Olivares, H
    Davis, EM
    Le Beau, M
    Yates, JR
    Hays, L
    Morgan, WF
    Petrini, JHJ
    [J]. CELL, 1998, 93 (03) : 477 - 486
  • [9] Checkpoints: How to activate p53
    Caspari, T
    [J]. CURRENT BIOLOGY, 2000, 10 (08) : R315 - R317
  • [10] Overexpression of a kinase-inactive ATR protein causes sensitivity to DNA-damaging agents and defects in cell cycle checkpoints
    Cliby, WA
    Roberts, CJ
    Cimprich, KA
    Stringer, CM
    Lamb, JR
    Schreiber, SL
    Friend, SH
    [J]. EMBO JOURNAL, 1998, 17 (01) : 159 - 169