Importance of secondary sources in the atmospheric budgets of formic and acetic acids

被引:263
作者
Paulot, F. [1 ]
Wunch, D. [1 ]
Crounse, J. D. [2 ]
Toon, G. C. [3 ]
Millet, D. B. [4 ]
DeCarlo, P. F. [5 ,12 ]
Vigouroux, C. [6 ]
Deutscher, N. M. [7 ]
Abad, G. Gonzalez [8 ]
Notholt, J. [9 ]
Warneke, T. [9 ]
Hannigan, J. W. [10 ]
Warneke, C. [11 ,12 ]
de Gouw, J. A. [11 ,12 ]
Dunlea, E. J. [12 ,13 ]
De Maziere, M. [6 ]
Griffith, D. W. T. [7 ]
Bernath, P. [8 ]
Jimenez, J. L. [12 ,13 ]
Wennberg, P. O. [1 ]
机构
[1] CALTECH, Div Engn & Appl Sci, Pasadena, CA 91125 USA
[2] CALTECH, Div Chem & Chem Engn, Pasadena, CA 91125 USA
[3] CALTECH, Jet Prop Lab, Pasadena, CA USA
[4] Univ Minnesota, Dept Soil Water & Climate, St Paul, MN 55108 USA
[5] Univ Colorado, Dept Atmospher & Ocean Sci, Boulder, CO 80309 USA
[6] Belgian Inst Space Aeron, Brussels, Belgium
[7] Univ Wollongong, Sch Chem, Wollongong, NSW, Australia
[8] Univ York, Dept Chem, York YO10 5DD, N Yorkshire, England
[9] Inst Environm Phys, Bremen, Germany
[10] Natl Ctr Atmospher Res, Boulder, CO 80307 USA
[11] NOAA, Earth Syst Res Lab, Div Chem Sci, Boulder, CO USA
[12] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA
[13] Univ Colorado, Dept Chem & Biochem, Boulder, CO 80309 USA
基金
美国国家航空航天局; 美国国家科学基金会; 英国自然环境研究理事会;
关键词
VOLATILE ORGANIC-COMPOUNDS; OH-INITIATED OXIDATION; KNUDSEN CELL REACTOR; GAS-PHASE REACTIONS; HETEROGENEOUS UPTAKE; TEMPERATURE-RANGE; CARBOXYLIC-ACIDS; TROPOSPHERIC CHEMISTRY; TRANSPACIFIC TRANSPORT; PHOTOCHEMICAL DATA;
D O I
10.5194/acp-11-1989-2011
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
We present a detailed budget of formic and acetic acids, two of the most abundant trace gases in the atmosphere. Our bottom-up estimate of the global source of formic and acetic acids are similar to 1200 and similar to 1400 Gmol yr(-1), dominated by photochemical oxidation of biogenic volatile organic compounds, in particular isoprene. Their sinks are dominated by wet and dry deposition. We use the GEOS-Chem chemical transport model to evaluate this budget against an extensive suite of measurements from ground, ship and satellite-based Fourier transform spectrometers, as well as from several aircraft campaigns over North America. The model captures the seasonality of formic and acetic acids well but generally underestimates their concentration, particularly in the Northern midlatitudes. We infer that the source of both carboxylic acids may be up to 50% greater than our estimate and report evidence for a long-lived missing secondary source of carboxylic acids that may be associated with the aging of organic aerosols. Vertical profiles of formic acid in the upper troposphere support a negative temperature dependence of the reaction between formic acid and the hydroxyl radical as suggested by several theoretical studies.
引用
收藏
页码:1989 / 2013
页数:25
相关论文
共 156 条
[61]   ATMOSPHERIC CHEMISTRY OF ISOPRENE AND OF ITS CARBONYL PRODUCTS [J].
GROSJEAN, D ;
WILLIAMS, EL ;
GROSJEAN, E .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 1993, 27 (05) :830-840
[62]   Global distribution and variability of formic acid as observed by MIPAS-ENVISAT [J].
Grutter, M. ;
Glatthor, N. ;
Stiller, G. P. ;
Fischer, H. ;
Grabowski, U. ;
Hoepfner, M. ;
Kellmann, S. ;
Linden, A. ;
von Clarmann, T. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2010, 115
[63]   Natural emissions of non-methane volatile organic compounds; carbon monoxide, and oxides of nitrogen from North America [J].
Guenther, A ;
Geron, C ;
Pierce, T ;
Lamb, B ;
Harley, P ;
Fall, R .
ATMOSPHERIC ENVIRONMENT, 2000, 34 (12-14) :2205-2230
[64]   Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature) [J].
Guenther, A. ;
Karl, T. ;
Harley, P. ;
Wiedinmyer, C. ;
Palmer, P. I. ;
Geron, C. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2006, 6 :3181-3210
[65]   Emission of 2-methyl-3-buten-2-ol by pines: A potentially large natural source of reactive carbon to the atmosphere [J].
Harley, P ;
Fridd-Stroud, V ;
Greenberg, J ;
Guenther, A ;
Vasconcellos, P .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1998, 103 (D19) :25479-25486
[66]   A product yield study of the reaction of HO2 radicals with ethyl peroxy (C2H5O2), acetyl peroxy (CH3C(O)O2), and acetonyl peroxy (CH3C(O)CH2O2) radicals [J].
Hasson, AS ;
Tyndall, GS ;
Orlando, JJ .
JOURNAL OF PHYSICAL CHEMISTRY A, 2004, 108 (28) :5979-5989
[67]   RATE CONSTANTS AND MECHANISMS FOR THE REACTION OF OH (OD) RADICALS WITH ACETYLENE, PROPYNE, AND 2-BUTYNE IN AIR AT 297 +/- 2K [J].
HATAKEYAMA, S ;
WASHIDA, N ;
AKIMOTO, H .
JOURNAL OF PHYSICAL CHEMISTRY, 1986, 90 (01) :173-178
[68]   Heterogeneous uptake of the C1 to C4 organic acids on a swelling clay mineral [J].
Hatch, C. D. ;
Gough, R. V. ;
Tolbert, M. A. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2007, 7 (16) :4445-4458
[69]   A simplified description of the evolution of organic aerosol composition in the atmosphere [J].
Heald, C. L. ;
Kroll, J. H. ;
Jimenez, J. L. ;
Docherty, K. S. ;
DeCarlo, P. F. ;
Aiken, A. C. ;
Chen, Q. ;
Martin, S. T. ;
Farmer, D. K. ;
Artaxo, P. .
GEOPHYSICAL RESEARCH LETTERS, 2010, 37
[70]   Kinetics of α-hydroxy-alkylperoxyl radicals in oxidation processes.: HO2•-initiated oxidation of ketones/aldehydes near the tropopause [J].
Hermans, I ;
Müller, JF ;
Nguyen, TL ;
Jacobs, PA ;
Peeters, J .
JOURNAL OF PHYSICAL CHEMISTRY A, 2005, 109 (19) :4303-4311