A single amino acid converts a repressor to an activator of flowering

被引:405
作者
Hanzawa, Y [1 ]
Money, T [1 ]
Bradley, D [1 ]
机构
[1] John Innes Ctr Plant Sci Res, Norwich NR4 7UH, Norfolk, England
关键词
FLOWERING LOCUS T; phosphatidylethanolamine-binding protein; Raf-kinase inhibitor protein; TERMINAL FLOWER 1;
D O I
10.1073/pnas.0500932102
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Homologous proteins occurring through gene duplication may give rise to novel functions through mutations affecting protein sequence or expression. Comparison of such homologues allows insight into how morphological traits evolve. However, it is often unclear which changes are key to determining new functions. To address these ideas, we have studied a system where two homologues have evolved clear and opposite functions in controlling a major developmental switch. In plants, flowering is a major developmental transition that is critical to reproductive success. Arabidopsis phosphatidylethanolamine-binding protein homologues TERMINAL FLOWER 1 (TFL1) and FLOWERING LOCUS T (FT) are key controllers of flowering, determining when and where flowers are made, but as opposing functions: TFL1 is a repressor, FT is an activator. We have uncovered a striking molecular basis for how these homologous proteins have diverged. Although < 60% identical, we have shown that swapping a single amino acid is sufficient to convert TFL1 to FT function and vice versa. Therefore, these key residues may have strongly contributed to the selection of these important functions over plant evolution. Further, our results suggest that TFL1 and FT are highly conserved in biochemical function and that they act as repressors or activators of flowering through discrimination of structurally related interactors by a single residue.
引用
收藏
页码:7748 / 7753
页数:6
相关论文
共 44 条
[1]   TERMINAL-FLOWER - A GENE AFFECTING INFLORESCENCE DEVELOPMENT IN ARABIDOPSIS-THALIANA [J].
ALVAREZ, J ;
GULI, CL ;
YU, XH ;
SMYTH, DR .
PLANT JOURNAL, 1992, 2 (01) :103-116
[2]   CONSTANS acts in the phloem to regulate a systemic signal that induces photoperiodic flowering of Arabidopsis [J].
An, HL ;
Roussot, C ;
Suárez-López, P ;
Corbesler, L ;
Vincent, C ;
Piñeiro, M ;
Hepworth, S ;
Mouradov, A ;
Justin, S ;
Turnbull, C ;
Coupland, G .
DEVELOPMENT, 2004, 131 (15) :3615-3626
[3]   Function from structure? The crystal structure of human phosphatidylethanolamine-binding protein suggests a role in membrane signal transduction [J].
Banfield, MJ ;
Barker, JJ ;
Perry, ACF ;
Brady, RL .
STRUCTURE, 1998, 6 (10) :1245-1254
[4]   The structure of Antirrhinum centroradialis protein (CEN) suggests a role as a kinase regulator [J].
Banfield, MJ ;
Brady, RL .
JOURNAL OF MOLECULAR BIOLOGY, 2000, 297 (05) :1159-1170
[5]   Multiple pathways in the decision to flower: Enabling, promoting, and resetting [J].
Boss, PK ;
Bastow, RM ;
Mylne, JS ;
Dean, C .
PLANT CELL, 2004, 16 (SUPPL.) :S18-S31
[6]   Control of inflorescence architecture in Antirrhinum [J].
Bradley, D ;
Carpenter, R ;
Copsey, L ;
Vincent, C ;
Rothstein, S ;
Coen, E .
NATURE, 1996, 379 (6568) :791-797
[7]   Inflorescence commitment and architecture in Arabidopsis [J].
Bradley, D ;
Ratcliffe, O ;
Vincent, C ;
Carpenter, R ;
Coen, E .
SCIENCE, 1997, 275 (5296) :80-83
[8]   A high-affinity inhibitor of yeast carboxypeptidase Y is encoded by TFSI and shows homology to a family of lipid binding proteins [J].
Bruun, AW ;
Svendsen, I ;
Sorensen, SO ;
Kielland-Brandt, MC ;
Winther, JR .
BIOCHEMISTRY, 1998, 37 (10) :3351-3357
[9]   Tfs1p, a member of the PEBP family, inhibits the Ira2p but not the Ira1p Ras GTPase-activating protein in Saccharomyces cerevisiae [J].
Chautard, H ;
Jacquet, M ;
Schoentgen, F ;
Bureaud, N ;
Bénédetti, H .
EUKARYOTIC CELL, 2004, 3 (02) :459-470
[10]   MMDB: Entrez's 3D-structure database [J].
Chen, J ;
Anderson, JB ;
DeWeese-Scott, C ;
Fedorova, ND ;
Geer, LY ;
He, SQ ;
Hurwitz, DI ;
Jackson, JD ;
Jacobs, AR ;
Lanczycki, CJ ;
Liebert, CA ;
Liu, CL ;
Madej, T ;
Marchler-Bauer, A ;
Marchler, GH ;
Mazumder, R ;
Nikolskaya, AN ;
Rao, BS ;
Panchenko, AR ;
Shoemaker, BA ;
Simonyan, V ;
Song, JS ;
Thiessen, PA ;
Vasudevan, S ;
Wang, YL ;
Yamashita, RA ;
Yin, JJ ;
Bryant, SH .
NUCLEIC ACIDS RESEARCH, 2003, 31 (01) :474-477