Histone H3 phosphorylation can promote TBP recruitment through distinct promoter-specific mechanisms

被引:80
作者
Lo, WS
Gamache, ER
Henry, KW
Yang, D
Pillus, L
Berger, SL
机构
[1] Wistar Inst Anat & Biol, Philadelphia, PA 19104 USA
[2] Univ Calif San Diego, Div Biol Sci, San Diego, CA 92103 USA
[3] Univ Calif San Diego, Ctr Canc, San Diego, CA 92103 USA
关键词
acetylation; histone; phosphorylation; SAGA; Snf1;
D O I
10.1038/sj.emboj.7600577
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Histone phosphorylation influences transcription, chromosome condensation, DNA repair and apoptosis. Previously, we showed that histone H3 Ser10 phosphorylation (pSer10) by the yeast Snf1 kinase regulates INO1 gene activation in part via Gcn5/SAGA complex-mediated Lys14 acetylation (acLys14). How such chromatin modification patterns develop is largely unexplored. Here we examine the mechanisms surrounding pSer10 at INO1, and at GAL1, which herein is identified as a new regulatory target of Snf1/pSer10. Snf1 behaves as a classic coactivator in its recruitment by DNA-bound activators, and in its role in modifying histones and recruiting TATA-binding protein (TBP). However, one important difference in Snf1 function in vivo at these promoters is that SAGA recruitment at INO1 requires histone phosphorylation via Snf1, whereas at GAL1, SAGA recruitment is independent of histone phosphorylation. In addition, the GAL1 activator physically interacts with both Snf1 and SAGA, whereas the INO1 activator interacts only with Snf1. Thus, at INO1, pSer10' s role in recruiting SAGA may substitute for recruitment by DNA-bound activator. Our results emphasize that histone modifications share general functions between promoters, but also acquire distinct roles tailored for promoter-specific requirements.
引用
收藏
页码:997 / 1008
页数:12
相关论文
共 71 条
[1]   Deciphering the transcriptional histone acetylation code for a human gene [J].
Agalioti, T ;
Chen, GY ;
Thanos, D .
CELL, 2002, 111 (03) :381-392
[2]  
AMBROZIAK J, 1994, J BIOL CHEM, V269, P15344
[3]   A nucleosomal function for IκB kinase-α in NF-κB-dependent gene expression [J].
Anest, V ;
Hanson, JL ;
Cogswell, PC ;
Steinbrecher, KA ;
Strahl, BD ;
Baldwin, AS .
NATURE, 2003, 423 (6940) :659-663
[4]   TBP MUTANTS DEFECTIVE IN ACTIVATED TRANSCRIPTION IN-VIVO [J].
ARNDT, KM ;
RICUPEROHOVASSE, S ;
WINSTON, F .
EMBO JOURNAL, 1995, 14 (07) :1490-1497
[5]   CHARACTERIZATION OF PHYSICAL INTERACTIONS OF THE PUTATIVE TRANSCRIPTIONAL ADAPTER, ADA2, WITH ACIDIC ACTIVATION DOMAINS AND TATA-BINDING PROTEIN [J].
BARLEV, NA ;
CANDAU, R ;
WANG, LA ;
DARPINO, P ;
SILVERMAN, N ;
BERGER, SL .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (33) :19337-19344
[6]   Histone modifications in transcriptional regulation [J].
Berger, SL .
CURRENT OPINION IN GENETICS & DEVELOPMENT, 2002, 12 (02) :142-148
[7]   Methylation of histone H3 Lys 4 in coding regions of active genes [J].
Bernstein, BE ;
Humphrey, EL ;
Erlich, RL ;
Schneider, R ;
Bouman, P ;
Liu, JS ;
Kouzarides, T ;
Schreiber, SL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (13) :8695-8700
[8]   SAGA is an essential in vivo target of the yeast acidic activator Gal4p [J].
Bhaumik, SR ;
Green, MR .
GENES & DEVELOPMENT, 2001, 15 (15) :1935-1945
[9]   Essential role for the SANT domain in the functioning of multiple chromatin remodeling enzymes [J].
Boyer, LA ;
Langer, MR ;
Crowley, KA ;
Tan, S ;
Denu, JM ;
Peterson, CL .
MOLECULAR CELL, 2002, 10 (04) :935-942
[10]   Gene silencing -: Trans-histone regulatory pathway in chromatin [J].
Briggs, SD ;
Xiao, TJ ;
Sun, ZW ;
Caldwell, JA ;
Shabanowitz, J ;
Hunt, DF ;
Allis, CD ;
Strahl, BD .
NATURE, 2002, 418 (6897) :498-498