A novel thermal model for the lattice Boltzmann method in incompressible limit

被引:1271
作者
He, X [1 ]
Chen, S
Doolen, GD
机构
[1] Univ Calif Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA
[2] Univ Calif Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA
关键词
D O I
10.1006/jcph.1998.6057
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A novel lattice Boltzmann thermal model is proposed for studying thermohydrodynamics in incompressible limit. The new model introduces an internal energy density distribution function to simulate the temperature field. The macroscopic density and velocity fields are still simulated using the density distribution function. Compared with the multispeed thermal lattice Boltzmann models, the current scheme is numerically more stable. In addition, the new model can incorporate viscous heat dissipation and compression work done by the pressure, in contrast to the passive-scalar-based thermal lattice Boltzmann models. Numerical simulations of Couette flow with a temperature gradient and Rayleigh-Benard convection agree well with analytical solutions and benchmark data. (C) 1998 Academic Press.
引用
收藏
页码:282 / 300
页数:19
相关论文
共 32 条
[1]   Derivation of the lattice Boltzmann method by means of the discrete ordinate method for the Boltzmann equation [J].
Abe, T .
JOURNAL OF COMPUTATIONAL PHYSICS, 1997, 131 (01) :241-246
[2]   LATTICE BOLTZMANN THERMOHYDRODYNAMICS [J].
ALEXANDER, FJ ;
CHEN, S ;
STERLING, JD .
PHYSICAL REVIEW E, 1993, 47 (04) :R2249-R2252
[3]   LBE SIMULATIONS OF RAYLEIGH-BENARD CONVECTION ON THE APE100 PARALLEL PROCESSOR [J].
BARTOLONI, A ;
BATTISTA, C ;
CABASINO, S ;
PAOLUCCI, PS ;
PECH, J ;
SARNO, R ;
TODESCO, GM ;
TORELLI, M ;
TROSS, W ;
VICINI, P ;
BENZI, R ;
CABIBBO, N ;
MASSAIOLI, F ;
TRIPICCIONE, R .
INTERNATIONAL JOURNAL OF MODERN PHYSICS C-PHYSICS AND COMPUTERS, 1993, 4 (05) :993-1006
[4]   A MODEL FOR COLLISION PROCESSES IN GASES .1. SMALL AMPLITUDE PROCESSES IN CHARGED AND NEUTRAL ONE-COMPONENT SYSTEMS [J].
BHATNAGAR, PL ;
GROSS, EP ;
KROOK, M .
PHYSICAL REVIEW, 1954, 94 (03) :511-525
[5]  
BUSSE FH, 1986, HYDRODYNAMIC INSTABI
[6]   Physical symmetry and lattice symmetry in the lattice Boltzmann method [J].
Cao, NZ ;
Shen, SY ;
Jin, S ;
Martinez, D .
PHYSICAL REVIEW E, 1997, 55 (01) :R21-R24
[7]  
CERCIGNANI C, 1988, APPL MATH SCI, V61
[8]   Lattice Boltzmann method for fluid flows [J].
Chen, S ;
Doolen, GD .
ANNUAL REVIEW OF FLUID MECHANICS, 1998, 30 :329-364
[9]   THERMAL LATTICE BHATNAGAR-GROSS-KROOK MODEL WITHOUT NONLINEAR DEVIATIONS IN MACRODYNAMIC EQUATIONS [J].
CHEN, Y ;
OHASHI, H ;
AKIYAMA, M .
PHYSICAL REVIEW E, 1994, 50 (04) :2776-2783
[10]   TRANSITION TO TIME-DEPENDENT CONVECTION [J].
CLEVER, RM ;
BUSSE, FH .
JOURNAL OF FLUID MECHANICS, 1974, 65 (OCT2) :625-645