In vitro molecular interactions and distribution of KCNE family with KCNQ1 in the human heart

被引:116
作者
Bendahhou, S
Marionneau, C
Haurogne, K
Larroque, MM
Derand, R
Szuts, V
Escande, D
Demolombe, S
Barhanin, J
机构
[1] CNRS, UMR 6097, Inst Pharmacol Mol & Cellulaire, F-06560 Valbonne, France
[2] Univ Nice, F-06560 Valbonne, France
[3] INSERM, U533, Inst Thorax, Nantes, France
[4] Fac Med, Dept Pharmacol & Pharmacotherapy, Szeged, Hungary
关键词
arrhythmia; K channel; long QT syndrome; repolarization; membrane currents;
D O I
10.1016/j.cardiores.2005.02.014
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Objective: The voltage-gated K+ channel KCNQ1 associates with the small KCNE1 beta subunit to underlie the lKs repolarizing current in the heart. Based on sequence homology, the KCNE family is recognized to comprise five members. Controversial data have indicated their participation in several K+ channel protein complexes, including KCNQ1. The expression level and the putative functions of the different KCNE subunits in the human heart still require further investigation. Methods: We have carried out a comparative study of all KCNE subunits with KCNQ1 using the patch-clamp technique in mammalian cells. Real-time RT-PCR absolute quantification was performed on human atrial and ventricular tissue. Results: While KCNQ1/KCNE1 heteromultimer reached high current density with slow gating kinetics and pronounced voltage dependence, KCNQ1/KCNE2 and KCNQ1/KCNE3 complexes produced instantaneous voltage-independent currents with low and high current density, respectively. Co-expression of KCNE4 or KCNE5 with KCNQ1 induced small currents in the physiological range of voltages, with kinetics similar to those of the KCNQ1/KCNE1 complex. However, co-expression of these inhibitory subunits with a disease-associated mutation (S140G-KCNQ1) led to currents that were almost undistinguishable from the KCNQ1/KCNE1 canonical complex. Absolute cDNA quantification revealed a relatively homogeneous distribution of each transcript, except for KCNE4, inside left atria and endo- and epicardia of left ventricular wall with the following abundance: KCNQ1 >> KCNE4 >= KCNE1 > KCNE3 >KCNE2>KCNE5. KCNE4 expression was twice as high in atrium compared to ventricle. Conclusions: Our data show that KCNQ1 forms a channel complex with 5 KCNE subunits in a specific manner but only interactions with KCNE1, KCNE2, and KCNE3 may have physiological relevance in the human heart. (C) 2005 European Society of Cardiology. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:529 / 538
页数:10
相关论文
共 43 条
[1]   MiRP1 forms IKr potassium channels with HERG and is associated with cardiac arrhythmia [J].
Abbott, GW ;
Sesti, F ;
Splawski, I ;
Buck, ME ;
Lehmann, WH ;
Timothy, KW ;
Keating, MT ;
Goldstein, SAN .
CELL, 1999, 97 (02) :175-187
[2]   MiRP2 forms potassium channels in skeletal muscle with Kv3.4 and is associated with periodic paralysis [J].
Abbott, GW ;
Butler, MH ;
Bendahhou, S ;
Dalakas, MC ;
Ptacek, LJ ;
Goldstein, SAN .
CELL, 2001, 104 (02) :217-231
[3]   Modulation of A-type potassium channels by a family of calcium sensors [J].
An, WF ;
Bowlby, MR ;
Betty, M ;
Cao, J ;
Ling, HP ;
Mendoza, G ;
Hinson, JW ;
Mattsson, KI ;
Strassle, BW ;
Trimmer, JS ;
Rhodes, KJ .
NATURE, 2000, 403 (6769) :553-556
[4]   K(v)LQT1 and IsK (minK) proteins associate to form the I-Ks cardiac potassium current [J].
Barhanin, J ;
Lesage, F ;
Guillemare, E ;
Fink, M ;
Lazdunski, M ;
Romey, G .
NATURE, 1996, 384 (6604) :78-80
[5]   Hallmarks of ion channel gene expression in end-stage heart failure [J].
Borlak, J ;
Thum, T .
FASEB JOURNAL, 2003, 17 (12) :1592-1608
[6]   Targeted disruption of the Kcnq1 gene produces a mouse model of Jervell and Lange-Nielsen Syndrome [J].
Casimiro, MC ;
Knollmann, BC ;
Ebert, SN ;
Vary, JC ;
Greene, AE ;
Franz, MR ;
Grinberg, A ;
Huang, SP ;
Pfeifer, K .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (05) :2526-2531
[7]   Charybdotoxin binding in the IKs pore demonstrates two MinK subunits in each channel complex [J].
Chen, HJ ;
Kim, LA ;
Rajan, S ;
Xu, SH ;
Goldstein, SAN .
NEURON, 2003, 40 (01) :15-23
[8]   KCNQ1 gain-of-function mutation in familial atrial fibrillation [J].
Chen, YH ;
Xu, SJ ;
Bendahhou, S ;
Wang, XL ;
Wang, Y ;
Xu, WY ;
Jin, HW ;
Sun, H ;
Su, XY ;
Zhuang, QN ;
Yang, YQ ;
Li, YB ;
Liu, Y ;
Xu, HJ ;
Li, XF ;
Ma, N ;
Mou, CP ;
Chen, Z ;
Barhanin, J ;
Huang, W .
SCIENCE, 2003, 299 (5604) :251-254
[9]   Novel mutations in KvLQT1 that affect Iks activation through interactions with Isk [J].
Chouabe, C ;
Neyroud, N ;
Richard, P ;
Denjoy, I ;
Hainque, B ;
Romey, G ;
Drici, MD ;
Guicheney, P ;
Barhanin, J .
CARDIOVASCULAR RESEARCH, 2000, 45 (04) :971-980
[10]   A mutation in the KCNE3 potassium channel gene is associated with susceptibility to thyrotoxic hypokalemic periodic paralysis [J].
Da Silva, MRD ;
Cerutti, JM ;
Arnaldi, LAT ;
Maciel, RMB .
JOURNAL OF CLINICAL ENDOCRINOLOGY & METABOLISM, 2002, 87 (11) :4881-4884