Label-free aptasensor for platelet-derived growth factor (PDGF) protein

被引:51
作者
Degefa, Tesfaye Hailu [1 ]
Kwak, Juhyoun [1 ]
机构
[1] Korea Adv Inst Sci & Technol, Dept Chem, Taejon 305701, South Korea
关键词
aptamer; target protein; label-free; aptasensor;
D O I
10.1016/j.aca.2008.03.010
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
A label-free aptasensor for platelet-derived growth factor (PDGF) protein is reported. The aptasensor uses mixed self-assembled monolayers (SAMs) composed of a thiol-modified PDGF binding aptamer and 6-mercaptohexanol (MCH) on a gold electrode. The SAMs were characterized by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and differential pulse voltammetry (DPV) before and after binding of the protein using [Fe(CN)(6)](3-/4-), a redox marker ion as an indicator for the formation of a protein-aptamer complex. The CVs at the PDGF modified electrode showed significant differences, such as changes in the peak currents and peak-to-peak separation, before and after binding of the target protein. The EIS spectra, in the form of Nyquist plots, were analyzed with a Randles circuit while the electron transfer resistance R-ct was used to monitor the binding of the target protein. The results showed that, without any modification to the aptamer, the target protein can be recognized effectively at the PDGF binding aptamer SAMs at the electrode surface. Control experiments using non-binding oligonucleotides assembled at the electrode surfaces also confirmed the results and showed that there was no formation of an aptamer-protein complex. The DPV signal at the aptamer functionalized electrode showed a linearly decreased marker ion peak current in a protein concentrations range of 1-40 nM. Thus, label-free detection of PDGF protein at an aptamer modified electrode has been demonstrated. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:163 / 168
页数:6
相关论文
共 36 条
[1]   Chronopotentiometry and Faradaic impedance spectroscopy as signal transduction methods for the biocatalytic precipitation of an insoluble product on electrode supports: routes for enzyme sensors, immunosensors and DNA sensors [J].
Alfonta, L ;
Bardea, A ;
Khersonsky, O ;
Katz, E ;
Willner, I .
BIOSENSORS & BIOELECTRONICS, 2001, 16 (9-12) :675-687
[2]  
Baker BR, 2006, J AM CHEM SOC, V128, P3138, DOI 10.1021/ja056957p
[3]   Sensing and amplification of oligonucleotide-DNA interactions by means of impedance spectroscopy: a route to a Tay-Sachs sensor [J].
Bardea, A ;
Patolsky, F ;
Dagan, A ;
Willner, I .
CHEMICAL COMMUNICATIONS, 1999, (01) :21-22
[4]   Aptamers come of age - at last [J].
Bunka, David H. J. ;
Stockley, Peter G. .
NATURE REVIEWS MICROBIOLOGY, 2006, 4 (08) :588-596
[5]   Label-free protein recognition using an aptamer-based impedance measurement assay [J].
Cai, H ;
Lee, TMH ;
Hsing, IM .
SENSORS AND ACTUATORS B-CHEMICAL, 2006, 114 (01) :433-437
[6]   Label-free impedance biosensors: Opportunities and challenges [J].
Daniels, Jonathan S. ;
Pourmand, Nader .
ELECTROANALYSIS, 2007, 19 (12) :1239-1257
[7]   Electrochemical impedance sensing of DNA at PNA self assembled monolayer [J].
Degefa, Tesfaye Hailu ;
Kwak, Juhyoun .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2008, 612 (01) :37-41
[8]  
F Allen J Bard L.R., 2001, Electrochemical Methods: Fundamentals and Applications
[9]   Synthetic DNA aptamers to detect protein molecular variants in a high-throughput fluorescence quenching assay [J].
Fang, XH ;
Sen, A ;
Vicens, M ;
Tan, WH .
CHEMBIOCHEM, 2003, 4 (09) :829-834
[10]   Molecular aptamer for real-time oncoprotein platelet-derived growth factor monitoring by fluorescence anisotropy [J].
Fang, XH ;
Cao, ZH ;
Beck, T ;
Tan, WH .
ANALYTICAL CHEMISTRY, 2001, 73 (23) :5752-5757