Fitness costs of mutations affecting the systemic acquired resistance pathway in Arabidopsis thaliana

被引:144
作者
Heidel, AJ [1 ]
Clarke, JD [1 ]
Antonovics, J [1 ]
Dong, XN [1 ]
机构
[1] Duke Univ, Dept Biol, Durham, NC 27708 USA
关键词
D O I
10.1534/genetics.104.032193
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
This study investigated the fitness effects of four mutations (npr1, cpr1, cpr5, and cpr6) and two transgenic genotypes (NPR1-L and NPR1-H) affecting different points of the systemic acquired resistance (SAR) signaling pathway associated with pathogen defense in Arabidopsis thaliana. The npr1 mutation, which resulted in a failure to express SAR, had no effect on fitness under growth chamber conditions, but decreased fitness in the field. The expression of NPR1 positively correlated with the fitness in the field. Constitutive activation of SAR by cpr1, cpr5, and cpr6 generally decreased fitness in the field and under two nutrient levels in two growth chamber conditions. At low-nutrient levels, fitness, differences between wild type and the constitutive mutants were unchanged or reduced (especially in cpr5). The reduced fitness of the constitutive mutants suggests that this pathway is costly, with the precise fitness consequences highly dependent on the environmental context.
引用
收藏
页码:2197 / 2206
页数:10
相关论文
共 57 条
[11]   Does competition magnify the fitness costs of induced responses in Arabidopsis thaliana?: A manipulative approach [J].
Cipollini, DF .
OECOLOGIA, 2002, 131 (04) :514-520
[12]   INDUCIBLE DEFENSES AND THE ALLOCATION OF RESOURCES - A MINIMAL MODEL [J].
CLARK, CW ;
HARVELL, CD .
AMERICAN NATURALIST, 1992, 139 (03) :521-539
[13]   Constitutive disease resistance requires EDS1 in the Arabidopsis mutants cpr1 and cpr6 and is partially EDS1-dependent in cpr5 [J].
Clarke, JD ;
Aarts, N ;
Feys, BJ ;
Dong, XN ;
Parker, JE .
PLANT JOURNAL, 2001, 26 (04) :409-420
[14]   Roles of salicylic acid, jasmonic acid, and ethylene in cpr-induced resistance in Arabidopsis [J].
Clarke, JD ;
Volko, SM ;
Ledford, H ;
Ausubel, FM ;
Dong, XN .
PLANT CELL, 2000, 12 (11) :2175-2190
[15]   Uncoupling PR gene expression from NPR1 and bacterial resistance:: Characterization of the dominant Arabidopsis cpr6-1 mutant [J].
Clarke, JD ;
Liu, YD ;
Klessig, DF ;
Dong, XN .
PLANT CELL, 1998, 10 (04) :557-569
[16]  
Datta S.K., 1999, PATHOGENESIS RELATED
[17]   OLIGOGALACTURONIDES AND CHITOSAN ACTIVATE PLANT DEFENSIVE GENES THROUGH THE OCTADECANOID PATHWAY [J].
DOARES, SH ;
SYROVETS, T ;
WEILER, EW ;
RYAN, CA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (10) :4095-4098
[18]   SALICYLIC-ACID INHIBITS SYNTHESIS OF PROTEINASE-INHIBITORS IN TOMATO LEAVES INDUCED BY SYSTEMIN AND JASMONIC ACID [J].
DOARES, SH ;
NARVAEZVASQUEZ, J ;
CONCONI, A ;
RYAN, CA .
PLANT PHYSIOLOGY, 1995, 108 (04) :1741-1746
[19]  
Elle E, 1999, EVOLUTION, V53, P22, DOI [10.2307/2640917, 10.1111/j.1558-5646.1999.tb05330.x]
[20]   In vivo interaction between NPR1 and transcription factor TGA2 leads to salicylic acid-mediated gene activation in Arabidopsis [J].
Fan, WH ;
Dong, XN .
PLANT CELL, 2002, 14 (06) :1377-1389