CYP83A1 and CYP83B1, two nonredundant cytochrome P450 enzymes metabolizing oximes in the biosynthesis of glucosinolates in Arabidopsis

被引:174
作者
Naur, P
Petersen, BL
Mikkelsen, MD
Bak, S
Rasmussen, H
Olsen, CE
Halkier, BA
机构
[1] Royal Vet & Agr Univ, Plant Biochem Lab, Ctr Mol Plant Physiol, DK-1871 Frederiksberg C, Denmark
[2] Royal Vet & Agr Univ, Dept Chem, Ctr Mol Plant Physiol, DK-1871 Frederiksberg C, Denmark
[3] IACR Rothamsted, Harpenden AL5 2JQ, Herts, England
关键词
D O I
10.1104/pp.102.019240
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
In the glucosinolate pathway, the postoxime enzymes have been proposed to have low specificity for the side chain and high specificity for the functional group. Here, we provide biochemical evidence for the functional role of the two cytochromes P450, CYP83A1 and CYP83B1, from Arabidopsis in oxime metabolism in the biosynthesis of glucosinolates. In a detailed analysis of the substrate specificities of the recombinant enzymes heterologously expressed in yeast (Saccharomyces cerevisiae), we show that aliphatic oximes derived from chain-elongated homologs of methionine are efficiently metabolized by CYP83A1, whereas CYP83B1 metabolizes these substrates with very low efficiency. Aromatic oximes derived from phenylalanine, tryptophan, and tyrosine are metabolized by both enzymes, although CYP83B1 has higher affinity for these substrates than CYP83A1, particularly in the case of indole-3-acetaldoxime, where there is a 50-fold difference in K-m value. The data show that CYP83A1 and CYP83B1 are nonredundant enzymes under physiologically normal conditions in the plant. The ability of CYP83A1 to metabolize aromatic oximes, albeit at small levels, explains the presence of indole glucosinolates at various levels in different developmental stages of the CYP83B1 knockout mutant, rnt1-1. Plants overexpressing CYP83B1 contain elevated levels of aliphatic glucosinolates derived from methionine homologs, whereas the level of indole glucosinolates is almost constant in the overexpressing lines. Together with the previous characterization of the members of the CYP79 family involved in oxime production, this work provides a framework for metabolic engineering of glucosinolates and for further dissection of the glucosinolate pathway.
引用
收藏
页码:63 / 72
页数:10
相关论文
共 40 条
[1]   Metabolic engineering of p-hydroxybenzylglucosinolate in Arabidopsis by expression of the cyanogenic CYP79A1 from Sorghum bicolor [J].
Bak, S ;
Olsen, CE ;
Petersen, BL ;
Moller, BL ;
Halkier, BA .
PLANT JOURNAL, 1999, 20 (06) :663-671
[2]   CYP83B1, a cytochrome P450 at the metabolic branch paint in auxin and indole glucosinolate biosynthesis in Arabidopsis [J].
Bak, S ;
Tax, FE ;
Feldmann, KA ;
Galbraith, DW ;
Feyereisen, R .
PLANT CELL, 2001, 13 (01) :101-111
[3]   The involvement of two P450 enzymes, CYP83B1 and CYP83A1, in auxin homeostasis and glucosinolate biosynthesis [J].
Bak, S ;
Feyereisen, R .
PLANT PHYSIOLOGY, 2001, 127 (01) :108-118
[4]   The SUR2 gene of Arabidopsis thaliana encodes the cytochrome P450CYP83B1, a modulator of auxin homeostasis [J].
Barlier, I ;
Kowalczyk, M ;
Marchant, A ;
Ljung, K ;
Bhalerao, R ;
Bennett, M ;
Sandberg, G ;
Bellini, C .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (26) :14819-14824
[5]   CYP79F1 and CYP79F2 have distinct functions in the biosynthesis of aliphatic glucosinolates in Arabidopsis [J].
Chen, SX ;
Glawischnig, E ;
Jorgensen, K ;
Naur, P ;
Jorgensen, B ;
Olsen, CE ;
Hansen, CH ;
Rasmussen, H ;
Pickett, JA ;
Halkier, BA .
PLANT JOURNAL, 2003, 33 (05) :923-937
[6]  
DAWSON GW, 1993, J BIOL CHEM, V268, P27154
[7]   Sur2 mutations of Arabidopsis thaliana define a new locus involved in the control of auxin homeostasis [J].
Delarue, M ;
Prinsen, E ;
Van Onckelen, H ;
Caboche, M ;
Bellini, C .
PLANT JOURNAL, 1998, 14 (05) :603-611
[8]  
Halkier BA, 1999, NATURALLY OCCURRING GLYCOSIDES, P193
[9]   PURIFICATION AND CHARACTERIZATION OF RECOMBINANT CYTOCHROME P450(TYR) EXPRESSED AT HIGH-LEVELS IN ESCHERICHIA-COLI [J].
HALKIER, BA ;
NIELSEN, HL ;
KOCH, B ;
MOLLER, BL .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 1995, 322 (02) :369-377
[10]  
Halkier BA, 2002, RECENT ADV PHYTOCHEM, V36, P223