State-space prediction model for chaotic time series

被引:16
作者
Alparslan, AK
Sayar, M
Atilgan, AR [1 ]
机构
[1] Bogazici Univ, Ctr Polymer Res, TUBITAK, Adv Polymer Mat Res Ctr, TR-80815 Bebek, Istanbul, Turkey
[2] Bogazici Univ, Sch Civil Engn, TR-80815 Bebek, Istanbul, Turkey
关键词
D O I
10.1103/PhysRevE.58.2640
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A simple method for predicting the continuation of scalar chaotic time series ahead in time is proposed. The false nearest neighbors technique in connection with the time-delayed embedding is employed so as to reconstruct the state space. A local forecasting model based upon the time evolution of the topological neighboring in the reconstructed phase space is suggested. A moving root-mean-square error is utilized in order to monitor the error along the prediction horizon. The model is tested for the convection amplitude of the Lorenz model; The results indicate that for approximately 100 cycles of the training data, the prediction follows the actual continuation very closely about six cycles. The proposed model, like other state-space forecasting models, captures the long-term behavior of the system due to the use of spatial neighbors in the state space.
引用
收藏
页码:2640 / 2643
页数:4
相关论文
共 28 条
[11]  
Golub G.H., 1996, Matrix Computations, Vthird
[12]  
LICHTENBERG AJ, 1983, REGULAR STOCHASTIC M
[13]  
LORENZ EN, 1963, J ATMOS SCI, V20, P130, DOI 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO
[14]  
2
[15]  
LORENZ EN, 1984, TELLUS A, V36, P98, DOI 10.1111/j.1600-0870.1984.tb00230.x
[16]  
Mantica Giorgio, 1992, Chaos, V2, P225, DOI 10.1063/1.165908
[17]   GEOMETRY FROM A TIME-SERIES [J].
PACKARD, NH ;
CRUTCHFIELD, JP ;
FARMER, JD ;
SHAW, RS .
PHYSICAL REVIEW LETTERS, 1980, 45 (09) :712-716
[18]   PREDICTING LOW-DIMENSIONAL SPATIOTEMPORAL DYNAMICS USING DISCRETE WAVELET TRANSFORMS [J].
PARLITZ, U ;
MAYERKRESS, G .
PHYSICAL REVIEW E, 1995, 51 (04) :R2709-R2711
[19]   STATISTICS FOR MATHEMATICAL PROPERTIES OF MAPS BETWEEN TIME-SERIES EMBEDDINGS [J].
PECORA, LM ;
CARROLL, TL ;
HEAGY, JF .
PHYSICAL REVIEW E, 1995, 52 (04) :3420-3439
[20]   EMBEDOLOGY [J].
SAUER, T ;
YORKE, JA ;
CASDAGLI, M .
JOURNAL OF STATISTICAL PHYSICS, 1991, 65 (3-4) :579-616