Structural studies on a twin-arginine signal sequence

被引:25
作者
Kipping, M
Lilie, H
Lindenstrauss, U
Andreesen, JR
Griesinger, C
Carlomagno, T
Brüser, T
机构
[1] Max Planck Inst Biophys Chem, D-37077 Gottingen, Germany
[2] Univ Halle Wittenberg, Inst Microbiol, D-06120 Halle Saale, Germany
[3] Univ Halle Wittenberg, Inst Biotechnol, D-06120 Halle Saale, Germany
[4] Max Planck Res Unit Enzymol Prot Folding, D-06120 Halle Saale, Germany
关键词
high potential iron-sulfur protein; twin-arginine translocation; signal sequence; protein translocation; nuclear magnetic resonance; H/D exchange matrix-assisted laser desorption/ionization-time of flight mass spectrometry;
D O I
10.1016/S0014-5793(03)00804-4
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Translocation of folded proteins across biological membranes can be mediated by the so-called 'twin-arginine translocation' (Tat) system. To be translocated, Tat substrates require N-terminal signal sequences which usually contain the eponymous twin-arginine motif. Here we report the first structural analysis of a twin-arginine signal sequence, the signal sequence of the high potential iron-sulfur protein from Allochromatium vinosum. Nuclear magnetic resonance (NMR) analyses of amide proton resonances did not indicate a signal sequence structure. Accordingly, data from H/D exchange matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry showed that the amide protons of the signal sequence exchange rapidly, indicating the absence of secondary structure in the signal sequence up to L29. We conclude that the conserved twin-arginine motif does not form a structure by itself or as a result of intramolecular interactions. (C) 2003 Published by Elsevier B.V. on behalf of the Federation of European Biochemical Societies.
引用
收藏
页码:18 / 22
页数:5
相关论文
共 26 条
[1]   THE 3-DIMENSIONAL SOLUTION STRUCTURE OF THE REDUCED HIGH-POTENTIAL IRON-SULFUR PROTEIN FROM CHROMATIUM-VINOSUM THROUGH NMR [J].
BANCI, L ;
BERTINI, I ;
DIKIY, A ;
KASTRAU, DHW ;
LUCHINAT, C ;
SOMPORNPISUT, P .
BIOCHEMISTRY, 1995, 34 (01) :206-219
[2]  
Bartsch RG., 1971, Methods Enzymol, V23, P644, DOI [10.1016/S0076-6879(71)23138-4, DOI 10.1016/S0076-6879(71)23138-4]
[3]   TRANSFER OF PROTEINS ACROSS MEMBRANES .2. RECONSTITUTION OF FUNCTIONAL ROUGH MICROSOMES FROM HETEROLOGOUS COMPONENTS [J].
BLOBEL, G ;
DOBBERSTEIN, B .
JOURNAL OF CELL BIOLOGY, 1975, 67 (03) :852-862
[4]  
Brüser T, 1998, FEMS MICROBIOL LETT, V164, P329
[5]   Membrane targeting of a folded and cofactor-containing protein [J].
Brüser, T ;
Yano, T ;
Brune, DC ;
Daldal, F .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 2003, 270 (06) :1211-1221
[6]   Hypothesis-review -: An alternative model of the twin arginine translocation system [J].
Brüser, T ;
Sanders, C .
MICROBIOLOGICAL RESEARCH, 2003, 158 (01) :7-17
[7]   A genetic screen for suppressors of Escherichia coli Tat signal peptide mutations establishes a critical role for the second arginine within the twin-arginine motif [J].
Buchanan, G ;
Sargent, F ;
Berks, BC ;
Palmer, T .
ARCHIVES OF MICROBIOLOGY, 2001, 177 (01) :107-112
[8]  
CARTER CW, 1974, J BIOL CHEM, V249, P4212
[9]   Thylakoid ΔpH-dependent precursor proteins bind to a cpTatC-Hcf106 complex before Tha4-dependent transport [J].
Cline, K ;
Mori, H .
JOURNAL OF CELL BIOLOGY, 2001, 154 (04) :719-729
[10]   Competition between Sec- and TAT-dependent protein translocation in Escherichia coli [J].
Cristóbal, S ;
de Gier, JW ;
Nielsen, H ;
von Heijne, G .
EMBO JOURNAL, 1999, 18 (11) :2982-2990