Loschmidt echo and Lyapunov exponent in a quantum disordered system

被引:22
作者
Adamov, Y [1 ]
Gornyi, IV
Mirlin, AD
机构
[1] Forschungszentrum Karlsruhe, Inst Nanotechnol, D-76021 Karlsruhe, Germany
[2] Univ Karlsruhe, Inst Theorie Kondensierten Mat, D-76128 Karlsruhe, Germany
[3] AF Ioffe Phys Tech Inst, St Petersburg 194021, Russia
[4] Leningrad Nucl Phys Inst, St Petersburg 188350, Russia
来源
PHYSICAL REVIEW E | 2003年 / 67卷 / 05期
关键词
D O I
10.1103/PhysRevE.67.056217
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We investigate the sensitivity of a disordered system with diffractive scatterers to a weak external perturbation. Specifically, we calculate the fidelity M(t) (also called the Loschmidt echo) characterizing a return probability after a propagation for a time t followed by a backward propagation governed by a slightly perturbed Hamiltonian. For short-range scatterers, we perform a diagrammatic calculation showing that the fidelity decays first exponentially according to the golden rule, and then follows a power law governed by the diffusive dynamics. For long-range disorder (when the diffractive scattering is of small-angle character), an intermediate regime emerges where the diagrammatics is not applicable. Using the path-integral technique, we derive a kinetic equation and show that M(t) decays exponentially with a rate governed by the classical Lyapunov exponent.
引用
收藏
页数:10
相关论文
共 34 条
[1]   Shot noise in chaotic systems: "Classical" to quantum crossover [J].
Agam, O ;
Aleiner, I ;
Larkin, A .
PHYSICAL REVIEW LETTERS, 2000, 85 (15) :3153-3156
[2]   Divergence of classical trajectories and weak localization [J].
Aleiner, IL ;
Larkin, AI .
PHYSICAL REVIEW B, 1996, 54 (20) :14423-14444
[3]   Role of divergence of classical trajectories in quantum chaos [J].
Aleiner, IL ;
Larkin, AI .
PHYSICAL REVIEW E, 1997, 55 (02) :R1243-R1246
[4]  
ALTSHULER BL, 1985, JETP LETT+, V42, P447
[5]  
[Anonymous], 1993, Quantum Theory: Concepts and Methods, Fundamental Theories of Physics
[6]   Quantum-classical correspondence in perturbed chaotic systems [J].
Benenti, G ;
Casati, G .
PHYSICAL REVIEW E, 2002, 65 (06)
[7]  
BENENTI G, NLINCD0208003
[8]   Sensitivity of wave field evolution and manifold stability in chaotic systems [J].
Cerruti, NR ;
Tomsovic, S .
PHYSICAL REVIEW LETTERS, 2002, 88 (05) :4-541034
[9]   Measuring the Lyapunov exponent using quantum mechanics [J].
Cucchietti, F.M. ;
Lewenkopf, C.H. ;
Mucciolo, E.R. ;
Pastawski, H.M. ;
Vallejos, R.O. .
Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2002, 65 (04) :1-046209
[10]  
Cucchietti FM, 2002, PHYS REV E, V65, DOI 10.1103/PhysRevE.65.045206