Comprehensive quantitative analysis of central carbon and amino-acid metabolism in Saccharomyces cerevisiae under multiple conditions by targeted proteomics

被引:94
作者
Costenoble, Roeland [1 ]
Picotti, Paola [1 ]
Reiter, Lukas [1 ,2 ,3 ]
Stallmach, Robert [1 ]
Heinemann, Matthias [1 ,4 ]
Sauer, Uwe [1 ]
Aebersold, Ruedi [1 ,5 ]
机构
[1] ETH, Inst Mol Syst Biol, Dept Biol, CH-8093 Zurich, Switzerland
[2] Univ Zurich, Inst Mol Biol, Zurich, Switzerland
[3] Univ Zurich, PhD Program Mol Life Sci, Zurich, Switzerland
[4] Univ Groningen, Groningen Biomol Sci & Biotechnol Inst, Groningen, Netherlands
[5] Univ Zurich, Fac Sci, Zurich, Switzerland
基金
欧洲研究理事会;
关键词
metabolism; S; cerevisiae; SRM; targeted proteomics; SYSTEMS BIOLOGY; MASS-SPECTROMETRY; PLASMA-PROTEINS; YEAST; NETWORK; RECONSTRUCTION; EXPRESSION; REPRODUCIBILITY; ROBUSTNESS; PRINCIPLES;
D O I
10.1038/msb.2010.122
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Decades of biochemical research have identified most of the enzymes that catalyze metabolic reactions in the yeast Saccharomyces cerevisiae. The adaptation of metabolism to changing nutritional conditions, in contrast, is much less well understood. As an important stepping stone toward such understanding, we exploit the power of proteomics assays based on selected reaction monitoring (SRM) mass spectrometry to quantify abundance changes of the 228 proteins that constitute the central carbon and amino-acid metabolic network in the yeast Saccharomyces cerevisiae, at five different metabolic steady states. Overall, 90% of the targeted proteins, including families of isoenzymes, were consistently detected and quantified in each sample, generating a proteomic data set that represents a nutritionally perturbed biological system at high reproducibility. The data set is near comprehensive because we detect 95-99% of all proteins that are required under a given condition. Interpreted through flux balance modeling, the data indicate that S. cerevisiae retains proteins not necessarily used in a particular environment. Further, the data suggest differential functionality for several metabolic isoenzymes. Molecular Systems Biology 7: 464; published online 1 February 2011; doi: 10.1038/msb.2010.122
引用
收藏
页数:13
相关论文
共 51 条
[1]   Multi-site assessment of the precision and reproducibility of multiple reaction monitoring-based measurements of proteins in plasma [J].
Addona, Terri A. ;
Abbatiello, Susan E. ;
Schilling, Birgit ;
Skates, Steven J. ;
Mani, D. R. ;
Bunk, David M. ;
Spiegelman, Clifford H. ;
Zimmerman, Lisa J. ;
Ham, Amy-Joan L. ;
Keshishian, Hasmik ;
Hall, Steven C. ;
Allen, Simon ;
Blackman, Ronald K. ;
Borchers, Christoph H. ;
Buck, Charles ;
Cardasis, Helene L. ;
Cusack, Michael P. ;
Dodder, Nathan G. ;
Gibson, Bradford W. ;
Held, Jason M. ;
Hiltke, Tara ;
Jackson, Angela ;
Johansen, Eric B. ;
Kinsinger, Christopher R. ;
Li, Jing ;
Mesri, Mehdi ;
Neubert, Thomas A. ;
Niles, Richard K. ;
Pulsipher, Trenton C. ;
Ransohoff, David ;
Rodriguez, Henry ;
Rudnick, Paul A. ;
Smith, Derek ;
Tabb, David L. ;
Tegeler, Tony J. ;
Variyath, Asokan M. ;
Vega-Montoto, Lorenzo J. ;
Wahlander, Asa ;
Waldemarson, Sofia ;
Wang, Mu ;
Whiteaker, Jeffrey R. ;
Zhao, Lei ;
Anderson, N. Leigh ;
Fisher, Susan J. ;
Liebler, Daniel C. ;
Paulovich, Amanda G. ;
Regnier, Fred E. ;
Tempst, Paul ;
Carr, Steven A. .
NATURE BIOTECHNOLOGY, 2009, 27 (07) :633-U85
[2]   Physicochemical modelling of cell signalling pathways [J].
Aldridge, Bree B. ;
Burke, John M. ;
Lauffenburger, Douglas A. ;
Sorger, Peter K. .
NATURE CELL BIOLOGY, 2006, 8 (11) :1195-1203
[3]   Quantitative mass spectrometric multiple reaction monitoring assays for major plasma proteins [J].
Anderson, L ;
Hunter, CL .
MOLECULAR & CELLULAR PROTEOMICS, 2006, 5 (04) :573-588
[4]   SINGLE AND MULTIPLE ION RECORDING TECHNIQUES FOR ANALYSIS OF DIPHENYLHYDANTOIN AND ITS MAJOR METABOLITE IN PLASMA [J].
BATY, JD ;
ROBINSON, PR .
BIOMEDICAL MASS SPECTROMETRY, 1977, 4 (01) :36-41
[5]  
Bell AW, 2009, NAT METHODS, V6, P423, DOI [10.1038/NMETH.1333, 10.1038/nmeth.1333]
[6]   Large-scale 13C-flux analysis reveals mechanistic principles of metabolic network robustness to null mutations in yeast -: art. no. R49 [J].
Blank, LM ;
Kuepfer, L ;
Sauer, U .
GENOME BIOLOGY, 2005, 6 (06)
[7]   Dynamics and design principles of a basic regulatory architecture controlling metabolic pathways [J].
Chin, Chen-Shan ;
Chubukov, Victor ;
Jolly, Emmitt R. ;
DeRisi, Joe ;
Li, Hao .
PLOS BIOLOGY, 2008, 6 (06) :1343-1356
[8]   The fluxes through glycolytic enzymes in Saccharomyces cerevisiae are predominantly regulated at posttranscriptional levels [J].
Daran-Lapujade, Pascale ;
Rossell, Sergio ;
van Gulik, Walter M. ;
Luttik, Marijke A. H. ;
de Groot, Marco J. L. ;
Slijper, Monique ;
Heck, Albert J. R. ;
Daran, Jean-Marc ;
de Winde, Johannes H. ;
Westerhoff, Hans V. ;
Pronk, Jack T. ;
Bakker, Barbara M. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (40) :15753-15758
[9]   Comprehensive mass-spectrometry-based proteome quantification of haploid versus diploid yeast [J].
de Godoy, Lyris M. F. ;
Olsen, Jesper V. ;
Cox, Juergen ;
Nielsen, Michael L. ;
Hubner, Nina C. ;
Froehlich, Florian ;
Walther, Tobias C. ;
Mann, Matthias .
NATURE, 2008, 455 (7217) :1251-U60
[10]   Quantitative proteomics and transcriptomics of anaerobic and aerobic yeast cultures reveals post-transcriptional regulation of key cellular processes [J].
de Groot, Marco J. L. ;
Daran-Lapujade, Pascale ;
van Breukelen, Bas ;
Knijnenburg, Theo A. ;
de Hulster, Erik A. F. ;
Reinders, Marcel J. T. ;
Pronk, Jack T. ;
Heck, Albert J. R. ;
Slijper, Monique .
MICROBIOLOGY-SGM, 2007, 153 :3864-3878