The effect of hypothermia on the expression of neurotrophin mRNA in the hippocampus following transient cerebral ischemia in the rat

被引:46
作者
Boris-Möller, F [1 ]
Kamme, F
Wieloch, T
机构
[1] Univ Lund Hosp, Wallenberg Neurosci Ctr, Expt Brain Res Lab, S-22185 Lund, Sweden
[2] Univ Lund Hosp, Dept Anesthesiol, S-22185 Lund, Sweden
来源
MOLECULAR BRAIN RESEARCH | 1998年 / 63卷 / 01期
关键词
ischemia; hypothermia; neurotrophin; gene expression; brain; protection;
D O I
10.1016/S0169-328X(98)00286-1
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
The expression of the mRNAs of nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin 3 (NT3) and the neurotrophin receptor, TrkB, was studied in the rat hippocampus by in situ hybridization following normothermic (37 degrees C) and protective hypothermic (33 degrees C) transient cerebral ischemia of 15 min duration. In the resistant dentate gyrus, normothermic ischemia transiently induced NGF mRNA at around 8 h of recovery, while the NT3 mRNA levels were depressed over at least a 24-h recovery period. The levels of BDNF and TrkB were transiently and markedly elevated with a maximal expression at 24 h of recovery. Intraischemic hypothermia reduced the induction of NGF mRNA, while the increase of BDNF mRNA expression occurred earlier during recovery, and the post-ischemic NT3 mRNA depression was not affected. Also, the expression of TrkB mRNA was enhanced, and occurred concomitantly with the elevation of BDNF mRNA. In contrast, there were no changes in neurotrophin and TrkB mRNA in the CA3 and CA1 regions. The expression of BDNF mRNA at 24 h after normothermic ischemia, was attenuated by intraischemic hypothermia. We conclude that, the expressions of NGF, BDNF, NT3 or TrkB mRNA in ischemia-sensitive hippocampal subregions are not increased by protective hypothermia. In contrast, hypothermia induces neurotrophin mRNA alterations in the ischemia-resistant dentate gyrus that may convey protection to sensitive regions. (C) 1998 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:163 / 173
页数:11
相关论文
共 60 条
[1]   Brain temperature and hippocampal function [J].
Andersen, P ;
Moser, EI .
HIPPOCAMPUS, 1995, 5 (06) :491-498
[2]   REGULATION OF GENE-EXPRESSION IN HIPPOCAMPAL-NEURONS BY DISTINCT CALCIUM SIGNALING PATHWAYS [J].
BADING, H ;
GINTY, DD ;
GREENBERG, ME .
SCIENCE, 1993, 260 (5105) :181-186
[3]  
Barde Y A, 1994, Prog Clin Biol Res, V390, P45
[4]   BRAIN-DERIVED NEUROTROPHIC FACTOR PROTECTS AGAINST ISCHEMIC CELL-DAMAGE IN RAT HIPPOCAMPUS [J].
BECK, T ;
LINDHOLM, D ;
CASTREN, E ;
WREE, A .
JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM, 1994, 14 (04) :689-692
[5]   WIDESPREAD INCREASE OF NERVE GROWTH-FACTOR PROTEIN IN THE RAT FOREBRAIN AFTER KINDLING-INDUCED SEIZURES [J].
BENGZON, J ;
SODERSTROM, S ;
KOKAIA, Z ;
KOKAIA, M ;
ERNFORS, P ;
PERSSON, H ;
EBENDAL, T ;
LINDVALL, O .
BRAIN RESEARCH, 1992, 587 (02) :338-342
[6]  
BERGSTEDT K, 1993, EXP BRAIN RES, V95, P91
[7]  
BUSTO R, 1994, J NEUROCHEM, V63, P1095
[8]   EFFECT OF MILD HYPOTHERMIA ON ISCHEMIA-INDUCED RELEASE OF NEUROTRANSMITTERS AND FREE FATTY-ACIDS IN RAT-BRAIN [J].
BUSTO, R ;
GLOBUS, MY ;
DIETRICH, WD ;
MARTINEZ, E ;
VALDES, I ;
GINSBERG, MD .
STROKE, 1989, 20 (07) :904-910
[9]   SMALL DIFFERENCES IN INTRAISCHEMIC BRAIN TEMPERATURE CRITICALLY DETERMINE THE EXTENT OF ISCHEMIC NEURONAL INJURY [J].
BUSTO, R ;
DIETRICH, WD ;
GLOBUS, MYT ;
VALDES, I ;
SCHEINBERG, P ;
GINSBERG, MD .
JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM, 1987, 7 (06) :729-738
[10]   HYPOTHERMIA PREVENTS THE ISCHEMIA-INDUCED TRANSLOCATION AND INHIBITION OF PROTEIN-KINASE-C IN THE RAT STRIATUM [J].
CARDELL, M ;
BORISMOLLER, F ;
WIELOCH, T .
JOURNAL OF NEUROCHEMISTRY, 1991, 57 (05) :1814-1817