Energy relaxation in discrete nonlinear lattices

被引:59
作者
Bikaki, A
Voulgarakis, NK
Aubry, S
Tsironis, GP
机构
[1] Univ Crete, Dept Phys, Heraklion 71003, Crete, Greece
[2] Univ Calif Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA
[3] Ctr Etud Saclay, CEA, CNRS, Leon Brillouin Lab, F-91191 Gif Sur Yvette, France
[4] Fdn Res & Technol Hellas, Heraklion 71003, Crete, Greece
来源
PHYSICAL REVIEW E | 1999年 / 59卷 / 01期
关键词
D O I
10.1103/PhysRevE.59.1234
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We numerically investigate energy relaxation in discrete nonlinear lattices in one and two spatial dimensions. We find that energy relaxation follows a stretched exponential law, and we study its dependence on the initial temperature. We attribute this behavior to hierarchies of discrete breathers that relax with different time constants, leading to a hierarchy of relaxation time scales in the system. Using heuristic arguments, we derive a nonlinear diffusion equation for the local energy density of the oscillators that results in similar relaxation dynamics. [S1063-651X(98)14712-8].
引用
收藏
页码:1234 / 1237
页数:4
相关论文
共 15 条
[1]   Slow motion as a thermal gradient effect [J].
Allegrini, P ;
Grigolini, P ;
Rocco, A .
PHYSICS LETTERS A, 1997, 233 (4-6) :309-316
[2]   Breakdown of exponential sensitivity to initial conditions: Role of the range of interactions [J].
Anteneodo, C ;
Tsallis, C .
PHYSICAL REVIEW LETTERS, 1998, 80 (24) :5313-5316
[3]  
ARONSON DG, 1986, NONLINEAR DIFFUSION
[4]   THE CONCEPT OF ANTIINTEGRABILITY APPLIED TO DYNAMICAL-SYSTEMS AND TO STRUCTURAL AND ELECTRONIC MODELS IN CONDENSED MATTER PHYSICS [J].
AUBRY, S .
PHYSICA D, 1994, 71 (1-2) :196-221
[5]   Breathers in nonlinear lattices: Existence, linear stability and quantization [J].
Aubry, S .
PHYSICA D-NONLINEAR PHENOMENA, 1997, 103 (1-4) :201-250
[6]   Spatially localized, temporally quasiperiodic, discrete nonlinear excitations [J].
Cai, D ;
Bishop, AR ;
GronbechJensen, N .
PHYSICAL REVIEW E, 1995, 52 (06) :R5784-R5787
[7]   SOLITARY WAVE COLLISIONS REVISITED [J].
CAMPBELL, DK ;
PEYRARD, M .
PHYSICA D, 1986, 18 (1-3) :47-53
[8]   Breather mobility in discrete phi(4) nonlinear lattices [J].
Chen, D ;
Aubry, S ;
Tsironis, GP .
PHYSICAL REVIEW LETTERS, 1996, 77 (23) :4776-4779
[9]   Energy thresholds for discrete breathers in one-, two-, and three-dimensional lattices [J].
Flach, S ;
Kladko, K ;
MacKay, RS .
PHYSICAL REVIEW LETTERS, 1997, 78 (07) :1207-1210
[10]   PROOF OF EXISTENCE OF BREATHERS FOR TIME-REVERSIBLE OR HAMILTONIAN NETWORKS OF WEAKLY COUPLED OSCILLATORS [J].
MACKAY, RS ;
AUBRY, S .
NONLINEARITY, 1994, 7 (06) :1623-1643