AY)P-ribosylation factors (ARFs), 20-kDa guanine nucleotide-binding proteins named for their ability to activate cholera toxin (CT) ADP-ribosyltransferase activity, have a critical role in vesicular transport slid activate a phospholipase D (PLD) isoform. Although ARF-like (ARL) proteins are very similar in sequence to ARFs, they were initially believed not to activate CT or PLD. mRNA for human ATL1. (hARL1), which is 57% identical in amino acid sequence to hARF1, is present in all tissues, with the highest amounts in kidney and pancreas and barely detectable amounts in brain. Relative amounts of hARL1 protein were similar to mRNA levels. Purified hARL1 (rARL1) synthesized in Escherichia coli had less activity toward PLD than did rARF1, although PLD activation by both proteins was guanosine guanosine 5'-(gamma-thio)triphosphate (GTP gamma S)-dependent. ARL1 stimulation of CT-catalyzed ADP-ribosylation was considerably less than that by rARF1 and was phospholipid dependent. GTP gamma S-binding by rARL1 was also phospholipid- and detergent-dependent, and in assays containing phosphatidylserine, was greater than that by rARF1. In vitro, the activities of rARL1 and rARF1 are similar. Rather than being a member of a separate subfamily, hARL1, which activates PLD and CT in a phospholipid-dependent manner, appears to be part of a continuum of ARF family proteins.