Flexible high-loading particle-reinforced polyurethane magnetic nanocomposite fabrication through

被引:56
作者
Guo, Zhanhu [1 ]
Park, Sung
Wei, Suying
Pereira, Tony
Moldovan, Monica
Karki, Amar B.
Young, David P.
ThomasHahn, H.
机构
[1] Univ Calif Los Angeles, Multifunct Composites Lab, Dept Aerosp & Mech Engn, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, Dept Mat Sci & Engn, Los Angeles, CA 90095 USA
[3] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA
关键词
D O I
10.1088/0957-4484/18/33/335704
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Flexible high-loading nanoparticle-reinforced polyurethane magnetic nanocomposites fabricated by the surface-initiated polymerization (SIP) method are reported. Extensive field emission scanning electron microscopic (SEM) and atomic force microscopic (AFM) observations revealed a uniform particle distribution within the polymer matrix. X-ray photoelectron spectrometry (XPS) and differential thermal analysis (DTA) revealed a strong chemical bonding between the nanoparticles and the polymer matrix. The elongation of the SIP nanocomposite under tensile test was about four times greater than that of the composite fabricated by a conventional direct mixing fabrication method. The nanocomposite shows particle-loading-dependent magnetic properties, with an increase of coercive force after the magnetic nanoparticles were embedded into the polymer matrix, arising from the increased interparticle distance and the introduced polymer-particle interactions.
引用
收藏
页数:8
相关论文
共 41 条
[1]   PMMA-based composite materials with reactive ceramic fillers .1. Chemical modification and characterisation of ceramic particles [J].
Abboud, M ;
Turner, M ;
Duguet, E ;
Fontanille, M .
JOURNAL OF MATERIALS CHEMISTRY, 1997, 7 (08) :1527-1532
[2]   Surface initiated polymerization from nanoparticle surfaces [J].
Advincula, RC .
JOURNAL OF DISPERSION SCIENCE AND TECHNOLOGY, 2003, 24 (3-4) :343-361
[3]  
[Anonymous], J APPL PHYS
[4]   XPS AND UV-VIS STUDY OF HIGH-PURITY FE2O3 THIN-FILMS OBTAINED USING THE SOL-GEL TECHNIQUE [J].
ARMELAO, L ;
BERTONCELLO, R ;
CROCIANI, L ;
DEPAOLI, G ;
GRANOZZI, G ;
TONDELLO, E ;
BETTINELLI, M .
JOURNAL OF MATERIALS CHEMISTRY, 1995, 5 (01) :79-83
[5]   Efficient hybrid solar cells from zinc oxide nanoparticles and a conjugated polymer [J].
Beek, WJE ;
Wienk, MM ;
Janssen, RAJ .
ADVANCED MATERIALS, 2004, 16 (12) :1009-+
[6]   MAGNETISM FROM THE ATOM TO THE BULK IN IRON, COBALT, AND NICKEL CLUSTERS [J].
BILLAS, IML ;
CHATELAIN, A ;
DEHEER, WA .
SCIENCE, 1994, 265 (5179) :1682-1684
[7]   Self-assembly of nanoparticles into structured spherical and network aggregates [J].
Boal, AK ;
Ilhan, F ;
DeRouchey, JE ;
Thurn-Albrecht, T ;
Russell, TP ;
Rotello, VM .
NATURE, 2000, 404 (6779) :746-748
[8]   Effective magnetic permeability of Ni and Co micro- and nanoparticles embedded in a ZnO matrix [J].
Brosseau, C ;
Talbot, P .
JOURNAL OF APPLIED PHYSICS, 2005, 97 (10)
[9]   Synthesis and magnetic properties of CoPt-poly(methylmethacrylate) nanostructured composite material [J].
Fang, JY ;
Tung, LD ;
Stokes, KL ;
He, JB ;
Caruntu, D ;
Zhou, WLL ;
O'Connor, CJ .
JOURNAL OF APPLIED PHYSICS, 2002, 91 (10) :8816-8818
[10]   Internal stress storage in shape memory polymer nanocomposites [J].
Gall, K ;
Dunn, ML ;
Liu, YP ;
Stefanic, G ;
Balzar, D .
APPLIED PHYSICS LETTERS, 2004, 85 (02) :290-292