A global analysis of C. elegans trans-splicing

被引:124
作者
Allen, Mary Ann [1 ]
Hillier, LaDeana W. [2 ]
Waterston, Robert H. [2 ]
Blumenthal, Thomas [1 ]
机构
[1] Univ Colorado, Dept Mol Cellular & Dev Biol, Boulder, CO 80309 USA
[2] Univ Washington, Sch Med, Dept Genome Sci, Seattle, WA 98195 USA
关键词
MESSENGER-RNA; 3'-END FORMATION; GENE; ORGANIZATION; OPERONS; INTRON;
D O I
10.1101/gr.113811.110
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Trans-splicing of one of two short leader RNAs, SL1 or SL2, occurs at the 59 ends of pre-mRNAs of many C. elegans genes. We have exploited RNA-sequencing data from the modENCODE project to analyze the transcriptome of C. elegans for patterns of trans-splicing. Transcripts of similar to 70% of genes are trans-spliced, similar to earlier estimates based on analysis of far fewer genes. The mRNAs of most trans-spliced genes are spliced to either SL1 or SL2, but most genes are not trans-spliced to both, indicating that SL1 and SL2 trans-splicing use different underlying mechanisms. SL2 trans-splicing occurs in order to separate the products of genes in operons genome wide. Shorter intercistronic distance is associated with greater use of SL2. Finally, increased use of SL1 trans-splicing to downstream operon genes can indicate the presence of an extra promoter in the intercistronic region, creating what has been termed a "hybrid" operon. Within hybrid operons the presence of the two promoters results in the use of the two SL classes: Transcription that originates at the promoter upstream of another gene creates a polycistronic pre-mRNA that receives SL2, whereas transcription that originates at the internal promoter creates transcripts that receive SL1. Overall, our data demonstrate that >17% of all C. elegans genes are in operons.
引用
收藏
页码:255 / 264
页数:10
相关论文
共 25 条
[1]   GOstat: find statistically overrepresented Gene Ontologies within a group of genes [J].
Beissbarth, T ;
Speed, TP .
BIOINFORMATICS, 2004, 20 (09) :1464-1465
[2]   Gene structure and organization in Caenorhabditis elegans [J].
Blumenthal, T ;
Spieth, J .
CURRENT OPINION IN GENETICS & DEVELOPMENT, 1996, 6 (06) :692-698
[3]  
BLUMENTHAL T, 1997, C ELEGANS, V2, P129
[4]  
BLUMENTHAL T, 2005, WORMBOOK, V25, P1
[5]   Unlocking the secrets of the genome [J].
Celniker, Susan E. ;
Dillon, Laura A. L. ;
Gerstein, Mark B. ;
Gunsalus, Kristin C. ;
Henikoff, Steven ;
Karpen, Gary H. ;
Kellis, Manolis ;
Lai, Eric C. ;
Lieb, Jason D. ;
MacAlpine, David M. ;
Micklem, Gos ;
Piano, Fabio ;
Snyder, Michael ;
Stein, Lincoln ;
White, Kevin P. ;
Waterston, Robert H. .
NATURE, 2009, 459 (7249) :927-930
[6]   A two-promoter system of gene expression in C-elegans [J].
Choi, Jaebok ;
Newman, Anna P. .
DEVELOPMENTAL BIOLOGY, 2006, 296 (02) :537-544
[7]  
CONRAD R, 1995, RNA, V1, P164
[8]   INSERTION OF PART OF AN INTRON INTO THE 5' UNTRANSLATED REGION OF A CAENORHABDITIS-ELEGANS GENE CONVERTS IT INTO A TRANS-SPLICED GENE [J].
CONRAD, R ;
THOMAS, J ;
SPIETH, J ;
BLUMENTHAL, T .
MOLECULAR AND CELLULAR BIOLOGY, 1991, 11 (04) :1921-1926
[9]   Genes involved in pre-mRNA 3′-end formation and transcription termination revealed by a lin-15 operon Muv suppressor screen [J].
Cui, Mingxue ;
Allen, Mary Ann ;
Larsen, Alison ;
MacMorri, Margaret ;
Han, Min ;
Blumenthal, Tom .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2008, 105 (43) :16665-16670
[10]   Evolution of the Caenorhabditis elegans Genome [J].
Cutter, Asher D. ;
Dey, Alivia ;
Murray, Rosalind L. .
MOLECULAR BIOLOGY AND EVOLUTION, 2009, 26 (06) :1199-1234