The mechanism of proton exclusion in the aquaporin-1 water channel

被引:234
作者
de Groot, BL
Frigato, T
Helms, V
Grubmüller, H
机构
[1] Max Planck Inst Biophys Chem, Theoret Mol Biophys Grp, D-37077 Gottingen, Germany
[2] Max Planck Inst Biophys, Theoret Biophys Grp, D-60596 Frankfurt, Germany
关键词
Q-HOP; proton transfer; molecular dynamics simulation; proton gradient; membrane permeability;
D O I
10.1016/j.jmb.2003.08.003
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Aquaporins are efficient, yet strictly selective water channels. Remarkably, proton permeation is fully blocked, in contrast to most other water-filled pores which are known to conduct protons well. Blocking of protons by aquaporins is essential to maintain the electrochemical gradient across cellular and subcellular membranes. We studied the mechanism of proton exclusion in aquaporin-1 by multiple non-equilibrium molecular dynamics simulations that also allow proton transfer reactions. From the simulations, an effective free energy profile for the proton motion along the channel was determined with a maximum-likelihood approach. The results indicate that the main barrier is not, as had previously been speculated, caused by the interruption of the hydrogen-bonded water chain, but rather by an electrostatic field centered around the fingerprint Asn-Pro-Ala (NPA) motif. Hydrogen bond interruption only forms a secondary barrier located at the ar/R constriction region. The calculated main barrier height of 25-30 kJ mol(-1) matches the barrier height for the passage of protons across pure lipid bilayers and, therefore, suffices to prevent major leakage of protons through aquaporins. Conventional molecular dynamics simulations additionally showed that negatively charged hydroxide ions are prevented from being trapped within the NPA region by two adjacent electrostatic barriers of opposite polarity. (C) 2003 Elsevier Ltd. All rights reserved.
引用
收藏
页码:279 / 293
页数:15
相关论文
共 68 条
[1]   THE GROTTHUSS MECHANISM [J].
AGMON, N .
CHEMICAL PHYSICS LETTERS, 1995, 244 (5-6) :456-462
[2]   The aquaporins, blueprints for cellular plumbing systems [J].
Agre, P ;
Bonhivers, M ;
Borgnia, MJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (24) :14659-14662
[3]   PROTON CONDUCTANCE BY THE GRAMICIDIN WATER WIRE - MODEL FOR PROTON CONDUCTANCE IN THE F1F0 ATPASES [J].
AKESON, M ;
DEAMER, DW .
BIOPHYSICAL JOURNAL, 1991, 60 (01) :101-109
[4]   Molecular dynamics study of bacteriorhodopsin and the purple membrane [J].
Baudry, J ;
Tajkhorshid, E ;
Molnar, F ;
Phillips, J ;
Schulten, K .
JOURNAL OF PHYSICAL CHEMISTRY B, 2001, 105 (05) :905-918
[5]   Protein, lipid and water organization in bacteriorhodopsin crystals:: a molecular view of the purple membrana at 1.9 Å resolution [J].
Belrhali, H ;
Nollert, P ;
Royant, A ;
Menzel, C ;
Rosenbusch, JP ;
Landau, EM ;
Pebay-Peyroula, E .
STRUCTURE, 1999, 7 (08) :909-917
[6]  
Berendsen H., 1981, INTERMOLECULAR FORCE, V331, P331, DOI [DOI 10.1007/978-94-015-7658-1_21, 10.1007/978-94-015-7658, DOI 10.1007/978-94-015-7658]
[7]   MOLECULAR-DYNAMICS WITH COUPLING TO AN EXTERNAL BATH [J].
BERENDSEN, HJC ;
POSTMA, JPM ;
VANGUNSTEREN, WF ;
DINOLA, A ;
HAAK, JR .
JOURNAL OF CHEMICAL PHYSICS, 1984, 81 (08) :3684-3690
[8]   Molecular dynamics simulations of a fluid bilayer of dipalmitoylphosphatidylcholine at full hydration, constant pressure, and constant temperature [J].
Berger, O ;
Edholm, O ;
Jahnig, F .
BIOPHYSICAL JOURNAL, 1997, 72 (05) :2002-2013
[9]   Cellular and molecular biology of the aquaporin water channels [J].
Borgnia, M ;
Nielsen, S ;
Engel, A ;
Agre, P .
ANNUAL REVIEW OF BIOCHEMISTRY, 1999, 68 :425-458
[10]   STUDIES OF THE RELATIONSHIP BETWEEN BILAYER WATER PERMEABILITY AND BILAYER PHYSICAL STATE [J].
CARRUTHERS, A ;
MELCHIOR, DL .
BIOCHEMISTRY, 1983, 22 (25) :5797-5807