Electrochemical CO2 Reduction over Compressively Strained CuAg Surface Alloys with Enhanced Multi-Carbon Oxygenate Selectivity

被引:588
作者
Clark, Ezra L. [1 ,2 ]
Hahn, Christopher [3 ,4 ]
Jaramillo, Thomas F. [3 ,4 ]
Bell, Alexis T. [1 ,2 ]
机构
[1] Lawrence Berkeley Natl Lab, Joint Ctr Artificial Photosynth, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA
[3] SLAC Natl Accelerator Lab, SUNCAT Ctr Interface Sci & Catalysis, Menlo Pk, CA 94025 USA
[4] Stanford Univ, Dept Chem Engn, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
CARBON-DIOXIDE REDUCTION; COPPER ELECTRODE; METAL-ELECTRODES; ELECTROCATALYTIC CONVERSION; HETEROGENEOUS CATALYSIS; BIMETALLIC SURFACES; LOW OVERPOTENTIALS; AQUEOUS-SOLUTION; ELECTROREDUCTION; HYDROCARBONS;
D O I
10.1021/jacs.7b08607
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The electrochemical reduction of carbon dioxide using renewably generated electricity offers a potential means for producing fuels and chemicals in a sustainable manner. To date, copper has been found to be the most effective catalyst for electrochemically reducing carbon dioxide to products such as methane, ethene, and ethanol. Unfortunately, the current efficiency of the process is limited by competition with the relatively facile hydrogen evolution reaction. Since multi-carbon products are more valuable precursors to chemicals and fuels than methane, there is considerable interest in modifying copper to enhance the multi-carbon product selectivity. Here, we report our investigations of electrochemical carbon dioxide reduction over CuAg bimetallic electrodes and surface alloys, which we find to be more selective for the formation of multi-carbon products than pure copper: This selectivity enhancement is a result of the selective suppression of hydrogen evolution, which occurs due to compressive strain induced by the formation of a CuAg surface alloy. Furthermore, we report that these bimetallic electrocatalysts exhibit an unusually high selectivity for the formation of multi-carbon carbonyl-containing products, which we hypothesize to be the consequence of a reduced coverage of adsorbed hydrogen and the reduced oxophilicity of the compressively strained copper. Thus, we show that promoting copper surface with small amounts of Ag is a promising means for improving the multi-carbon oxygenated product selectivity of copper during electrochemical CO2 reduction.
引用
收藏
页码:15848 / 15857
页数:10
相关论文
共 74 条
[1]   Acetaldehyde as an Intermediate in the Electroreduction of Carbon Monoxide to Ethanol on Oxide-Derived Copper [J].
Bertheussen, Erlend ;
Verdaguer-Casadevall, Arnau ;
Ravasio, Davide ;
Montoya, Joseph H. ;
Trimarco, Daniel B. ;
Roy, Claudie ;
Meier, Sebastian ;
Wendland, Juergen ;
Norskov, Jens K. ;
Stephens, Ifan E. L. ;
Chorkendorff, Ib .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2016, 55 (04) :1450-1454
[2]   The Importance of Cannizzaro-Type Reactions during Electrocatalytic Reduction of Carbon Dioxide [J].
Birdja, Yuvraj Y. ;
Koper, Marc T. M. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2017, 139 (05) :2030-2034
[3]   Ligand effects in heterogeneous catalysis and electrochemistry [J].
Bligaard, T. ;
Norskov, J. K. .
ELECTROCHIMICA ACTA, 2007, 52 (18) :5512-5516
[4]   Phase diagrams for surface alloys [J].
Christensen, A ;
Ruban, AV ;
Stoltze, P ;
Jacobsen, KW ;
Skriver, HL ;
Norskov, JK ;
Besenbacher, F .
PHYSICAL REVIEW B, 1997, 56 (10) :5822-5834
[5]   The Central Role of Bicarbonate in the Electrochemical Reduction of Carbon Dioxide on Gold [J].
Dunwell, Marco ;
Lu, Qi ;
Heyes, Jeffrey M. ;
Rosen, Jonathan ;
Chen, Jingguang G. ;
Yan, Yushan ;
Jiao, Feng ;
Xu, Bingjun .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2017, 139 (10) :3774-3783
[6]   A Direct Grain-Boundary-Activity Correlation for CO Electroreduction on Cu Nanoparticles [J].
Feng, Xiaofeng ;
Jiang, Kaili ;
Fan, Shoushan ;
Kanan, Matthew W. .
ACS CENTRAL SCIENCE, 2016, 2 (03) :169-174
[7]   A review of the aqueous electrochemical reduction of CO2 to hydrocarbons at copper [J].
Gattrell, M. ;
Gupta, N. ;
Co, A. .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2006, 594 (01) :1-19
[8]   Identification of Possible Pathways for C-C Bond Formation during Electrochemical Reduction of CO2: New Theoretical Insights from an Improved Electrochemical Model [J].
Goodpaster, Jason D. ;
Bell, Alexis T. ;
Head-Gordon, Martin .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2016, 7 (08) :1471-1477
[9]   Engineering Cu surfaces for the electrocatalytic conversion of CO2: Controlling selectivity toward oxygenates and hydrocarbons [J].
Hahn, Christopher ;
Hatsukade, Toru ;
Kim, Youn-Geun ;
Vailionis, Arturas ;
Baricuatro, Jack H. ;
Higgins, Drew C. ;
Nitopi, Stephanie A. ;
Soriaga, Manuel P. ;
Jaramillo, Thomas F. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2017, 114 (23) :5918-5923
[10]   Synthesis of thin film AuPd alloys and their investigation for electrocatalytic CO2 reduction [J].
Hahn, Christopher ;
Abram, David N. ;
Hansen, Heine A. ;
Hatsukade, Toru ;
Jackson, Ariel ;
Johnson, Natalie C. ;
Hellstern, Thomas R. ;
Kuhl, Kendra P. ;
Cave, Etosha R. ;
Feaster, Jeremy T. ;
Jaramillo, Thomas F. .
JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (40) :20185-20194