Varieties of Helmholtz machine

被引:71
作者
Dayan, P [1 ]
Hinton, GE [1 ]
机构
[1] UNIV TORONTO, TORONTO, ON M5S 1A1, CANADA
基金
加拿大自然科学与工程研究理事会;
关键词
expectation-maximization; unsupervised learning; feedback connections;
D O I
10.1016/S0893-6080(96)00009-3
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The Helmholtz machine is a new unsupervised learning architecture that uses top-down connections to build probability density models of input and bottom-up connections to build inverses to those models. The wake-sleep learning algorithm for the machine involves just the purely local delta rule. This paper suggests a number of different varieties of Helmholtz machines, each with its own strengths and weaknesses. and relates them to cortical information processing. Copyright (C) 1996 Elsevier Science Ltd.
引用
收藏
页码:1385 / 1403
页数:19
相关论文
共 65 条
[41]   CONNECTIONIST LEARNING OF BELIEF NETWORKS [J].
NEAL, RM .
ARTIFICIAL INTELLIGENCE, 1992, 56 (01) :71-113
[42]  
NEAL RM, UNPUB FACTOR ANAL US
[43]  
NEAL RM, 1994, UNPUB BIOMETRIKA
[44]  
Pearl, 1989, MORGAN KAUFMANN SERI, DOI DOI 10.1016/C2009-0-27609-4
[45]  
PECE AEC, 1992, ARTIFICIAL NEURAL NETWORKS, 2, VOLS 1 AND 2, P865
[46]  
Peterson C., 1987, Complex Systems, V1, P995
[47]  
Rescorla R. A., 1972, Classical conditioning: current research and theory, P64, DOI [DOI 10.1101/GR.110528.110, 10.1101/gr.110528.110]
[48]  
Rissanen J., 1989, STOCHASTIC COMPLEXIT
[49]   EM ALGORITHMS FOR ML FACTOR-ANALYSIS [J].
RUBIN, DB ;
THAYER, DT .
PSYCHOMETRIKA, 1982, 47 (01) :69-76
[50]  
Rumelhart David E., 1995, Backpropagation: Theory, architectures, and applications, P1