Lipid lateral diffusion coefficients in the quarternary system of dioleoylphosphatidylcholine ( DOPC), sphingomyelin, cholesterol, and water were determined by the pulsed field gradient NMR technique on macroscopically aligned bilayers. The molar ratio between dioleoylphosphatidylcholine and sphingomyelin was set to 1: 1, the cholesterol content was varied between 0 and 45 mol %, the water content was 40 wt %, and the temperature was varied between 293 and 333 K. The diffusion coefficients were separated into fast and slow spectral components by using the CORE method for global analysis of correlated spectral data. A large two-phase region, tentatively assigned to the liquid disordered (l(d)) and the liquid ordered (l(o)) phases, was present in the phase diagram. The ld phase was enriched in dioleoylphosphatidylcholine and exhibited diffusion coefficients that were about three to five times larger than for the l(o) phase. Both the diffusion coefficients and the apparent activation energies for the quarternary systems were compatible with earlier reports on ternary phospholipid/ cholesterol/ water systems. However, in contrast to the latter ternary systems, the exchange of lipids between the lo and the ld phases was slow on the timescale for the diffusion experiment for the quarternary ones. This means that on the millisecond timescale fluid, ordered domains are floating around in a sea of faster diffusing lipids, assigned to consist of mainly dioleoylphosphatidylcholine.