Seasonal variation in N2O emissions from urine patches:: Effects of urine concentration, soil compaction and dung

被引:115
作者
van Groenigen, JW
Velthof, GL
van der Bolt, FJE
Vos, A
Kuikman, PJ
机构
[1] Univ Wageningen & Res Ctr, Alterra, Soil Sci Ctr, NL-6700 AA Wageningen, Netherlands
[2] Univ Wageningen & Res Ctr, Alterra, Water & Climate Ctr, NL-6700 AA Wageningen, Netherlands
关键词
dung; greenhouse gas emissions; nitrous oxide; soil compaction; urine patches;
D O I
10.1007/s11104-004-6261-2
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Urine patches in pastures rank among the highest sources of the greenhouse gas nitrous oxide (N2O) from animal production systems. Previous laboratory studies indicate that N2O emissions for urine-N in pastures may increase with a factor five or eight in combination with soil compaction and dung, respectively. These combinations of urine, compaction and dung occur regularly in pastures, especially in so-called camping areas. The alms of this study were (1) to experimentally quantify the effect of compaction and dung on emission factors of N2O from urine patches under field conditions; (11) to detect any seasonal changes in emission from urine patches; and (iii) to quantify possible effects of urine concentration and -volume. A series of experiments on the effects of compaction, dung, urine-N concentration and urine volume was set up at a pasture on a sandy soil (typic Endoaquoll) in Wageningen, the Netherlands. Artificial urine was applied 8 times in the period August 2000-November 2001, and N2O emissions were monitored for a minimum of I month after each application. The average emission factor for urine-only treatments was 1.55%. Over the whole period, only soil compaction had a clear significant effect. raising the average N2O emissions from urine patches from 1.30% to 2.92% of the applied N. Dung had no consistent effect; although it increased the average emissions from 1.60% to 2.82%, this was clearly significant (P < 0.01) for only one application date and marginally significant (P = 0.054) for the whole experiment. Both compaction and dung increased water-filled pore space (WFPS) of the topsoil for a more prolonged time than high urine volumes. No effect of amount of urine-N or urine volume on N2O emissions relative to added N was detected for the whole experiment. There were clear differences between application dates, with highest emissions for urine-only treatments of 4.25% in October, 2000, and lowest of -0.11 % in June, 2001. Emissions peaked at 60-70% WFPS, and decreased rapidly with both higher and lower WFPS. We conclude that compaction leads to a considerable increase in the NO emissions under field conditions, mainly through higher WFPS. Dung addition may have the same effect, although this was not consistent throughout our experiment. Seasonal variations seemed mainly driven by differences in WFPS. Based on this study, mitigation strategies should focus on minimizing the grazing period with wet conditions leading to WFPS > 50%, avoiding camping areas in pastures. and on avoiding grazing under moist soil conditions. Greenhouse gas budgets for grazing conditions should include the effects of soil compaction and dung to represent actual emissions.
引用
收藏
页码:15 / 27
页数:13
相关论文
共 33 条
[21]   SOIL COMPACTING IMPACTS OF GRAZING IN MIXED PRAIRIE AND FESCUE GRASSLAND ECOSYSTEMS OF ALBERTA [J].
NAETH, MA ;
PLUTH, DJ ;
CHANASYK, DS ;
BAILEY, AW ;
FEDKENHEUER, AW .
CANADIAN JOURNAL OF SOIL SCIENCE, 1990, 70 (02) :157-167
[22]   Nitrous oxide emissions from grazed grassland [J].
Oenema, O ;
Velthof, GL ;
Yamulki, S ;
Jarvis, SC .
SOIL USE AND MANAGEMENT, 1997, 13 (04) :288-295
[23]  
OENEMA O, 2005, IN PRESS NUTR CYCL A
[24]  
PETERSEN R. G., 1956, AGRON JOUR, V48, P440
[25]   EFFECT OF COMPACTION ON SOIL AIR IN A POT EXPERIMENT AND IN THE FIELD [J].
SIMOJOKI, A ;
JAAKKOLA, A ;
ALAKUKKU, L .
SOIL & TILLAGE RESEARCH, 1991, 19 (2-3) :175-186
[26]   Nitrogen in crop production: An account of global flows [J].
Smil, V .
GLOBAL BIOGEOCHEMICAL CYCLES, 1999, 13 (02) :647-662
[27]   Nitrous oxide emission from urine-treated soil as influenced by urine composition and soil physical conditions [J].
van Groenigen, JW ;
Kuikman, PJ ;
de Groot, WJM ;
Velthof, GL .
SOIL BIOLOGY & BIOCHEMISTRY, 2005, 37 (03) :463-473
[28]   Nitrous oxide emissions from silage maize fields under different mineral nitrogen fertilizer and slurry applications [J].
van Groenigen, JW ;
Kasper, GJ ;
Velthof, GL ;
van den Pol-van Dasselaar, A ;
Kuikman, PJ .
PLANT AND SOIL, 2004, 263 (1-2) :101-111
[29]  
VANVUUREN AM, 1997, GASEOUS NITROEN EMIS
[30]   Seasonal variations in nitrous oxide losses from managed grasslands in The Netherlands [J].
Velthof, GL ;
Brader, AB ;
Oenema, O .
PLANT AND SOIL, 1996, 181 (02) :263-274