Kinetics quality assessment for relative quantification by real-time PCR

被引:5
作者
Bar, T [1 ]
Muszta, A [1 ]
机构
[1] Chalmers, S-41296 Gothenburg, Sweden
关键词
D O I
10.2144/05393ST01
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
For proper relative quantification by real-time PCR, compared samples should have similar PCR efficiencies. To test this prerequisite, we developed two quality tests: (i) adjustment of a test for kinetic outlier detection (KOD) to relative quantification; and (ii) comparison of the efficiency variance of test samples with the efficiency variance of samples with highly reproducible quantification. The tests were applied on relative quantification of two genes in 30 sets of 5 replicate samples (same treatment, different animals). Ten low-quality sets and 28 outliers were identified. The low-quality sets showed higher coefficient of variation (cv)% of DNA quantities in replicate experiments than high-quality sets (63% versus 26%; P = 0.001) and contained a higher proportion of outlying quantities (35% versus 5.9%; P = 0.001) when individual samples were detected by adjusted KOD. Outlier detection with adjusted KOD reduced thefalse detection of outliers by 213 compared with the previous, nonadjusted version of KOD (20% versus 5.9%; P = 0.001). We conclude that the presented tests can be used to assign technical reasons to outlying observations.
引用
收藏
页码:333 / +
页数:5
相关论文
共 22 条
[1]   Normalization of real-time quantitative reverse transcription-PCR data: A model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets [J].
Andersen, CL ;
Jensen, JL ;
Orntoft, TF .
CANCER RESEARCH, 2004, 64 (15) :5245-5250
[2]   Kinetic Outlier Detection (KOD) in real-time PCR -: art. no. e105 [J].
Bar, T ;
Ståhlberg, A ;
Muszta, A ;
Kubista, M .
NUCLEIC ACIDS RESEARCH, 2003, 31 (17) :e105
[3]   Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays [J].
Bustin, SA .
JOURNAL OF MOLECULAR ENDOCRINOLOGY, 2000, 25 (02) :169-193
[4]  
Chandler DP, 1998, APPL ENVIRON MICROB, V64, P669
[5]   High-resolution semi-quantitative real-time PCR without the use of a standard curve [J].
Gentle, A ;
Anastasopoulos, F ;
McBrien, NA .
BIOTECHNIQUES, 2001, 31 (03) :502-+
[6]   Evaluation of a homemade SYBR® Green I reaction mixture for real-time PCR quantification of gene expression [J].
Karsai, A ;
Müller, S ;
Platz, S ;
Hauser, MT .
BIOTECHNIQUES, 2002, 32 (04) :790-+
[7]   Light-up probe based real-time Q-PCR [J].
Kubista, M ;
Ståhlberg, A ;
Bar, T .
GENOMICS AND PROTECOMICS TECHNOLOGIES, 2001, 4264 :53-58
[8]   Validation of a quantitative method for real time PCR kinetics [J].
Liu, WH ;
Saint, DA .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2002, 294 (02) :347-353
[9]   Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method [J].
Livak, KJ ;
Schmittgen, TD .
METHODS, 2001, 25 (04) :402-408
[10]   A new mathematical model for relative quantification in real-time RT-PCR [J].
Pfaffl, MW .
NUCLEIC ACIDS RESEARCH, 2001, 29 (09) :E45