Metabolic flux analysis of CHO cells at growth and non-growth phases using isotopic tracers and mass spectrometry

被引:206
作者
Ahn, Woo Suk [1 ]
Antoniewicz, Maciek R. [1 ]
机构
[1] Univ Delaware, Dept Chem Engn, Metab Engn & Syst Biol Lab, Newark, DE 19716 USA
关键词
Metabolic flux map; Stable isotope tracers; Non-stationary flux analysis; Mammalian cell culture; Mass spectrometry; TRANSIENT C-13-LABELING EXPERIMENTS; CULTURE TEMPERATURE; PERFUSION CULTURE; HEPATIC CELLS; PART II; DISTRIBUTIONS; GLUTAMINE; GLUCOSE; C-13; ERYTHROPOIETIN;
D O I
10.1016/j.ymben.2011.07.002
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Chinese hamster ovary (CHO) cells are the main platform for production of biotherapeutics in the biopharmaceutical industry. However, relatively little is known about the metabolism of CHO cells in cell culture. In this work, metabolism of CHO cells was studied at the growth phase and early stationary phase using isotopic tracers and mass spectrometry. CHO cells were grown in fed-batch culture over a period of six days. On days 2 and 4, [1,2-C-13] glucose was introduced and the labeling of intracellular metabolites was measured by gas chromatography-mass spectrometry (GC-MS) at 6, 12 and 24 h following the introduction of tracer. Intracellular metabolic fluxes were quantified from measured extracellular rates and C-13-labeling dynamics of intracellular metabolites using non-stationary C-13-metabolic flux analysis (C-13-MFA). The flux results revealed significant rewiring of intracellular metabolic fluxes in the transition from growth to non-growth, including changes in energy metabolism, redox metabolism, oxidative pentose phosphate pathway and anaplerosis. At the exponential phase, CHO cell metabolism was characterized by a high flux of glycolysis from glucose to lactate, anaplerosis from pyruvate to oxaloacetate and from glutamate to a-ketoglutarate, and cataplerosis though malic enzyme. At the stationary phase, the flux map was characterized by a reduced flux of glycolysis, net lactate uptake, oxidative pentose phosphate pathway flux, and reduced rate of anaplerosis. The fluxes of pyruvate dehydrogenase and TCA cycle were similar at the exponential and stationary phase. The results presented here provide a solid foundation for future studies of CHO cell metabolism for applications such as cell line development and medium optimization for high-titer production of recombinant proteins. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:598 / 609
页数:12
相关论文
共 48 条
[1]   Effect of Culture Temperature on Erythropoietin Production and Glycosylation in a Perfusion Culture of Recombinant CHO Cells [J].
Ahn, Woo Suk ;
Jeon, Jae-Jin ;
Jeong, Yeong-Ran ;
Lee, Seung Joo ;
Yoon, Sung Kwan .
BIOTECHNOLOGY AND BIOENGINEERING, 2008, 101 (06) :1234-1244
[2]   Analysis of CHO cells metabolic redistribution in a glutamate-based defined medium in continuous culture [J].
Altamirano, C ;
Illanes, A ;
Casablancas, A ;
Gámez, X ;
Cairó, JJ ;
Gòdia, C .
BIOTECHNOLOGY PROGRESS, 2001, 17 (06) :1032-1041
[3]   Improvement of CHO cell culture medium formulation:: Simultaneous substitution of glucose and glutamine [J].
Altamirano, C ;
Paredes, C ;
Cairó, JJ ;
Gòdia, F .
BIOTECHNOLOGY PROGRESS, 2000, 16 (01) :69-75
[4]   Accurate assessment of amino acid mass isotopomer distributions for metabolic flux analysis [J].
Antoniewicz, Maciek R. ;
Kelleher, Joanne K. ;
Stephanopoulos, Gregory .
ANALYTICAL CHEMISTRY, 2007, 79 (19) :7554-7559
[5]   Metabolic flux analysis in a nonstationary system:: Fed-batch fermentation of a high yielding strain of E. coli producing 1,3-propanediol [J].
Antoniewicz, Maciek R. ;
Kraynie, David F. ;
Laffend, Lisa A. ;
Gonzalez-Lergier, Joanna ;
Kelleher, Joanne K. ;
Stephanopoulos, Gregory .
METABOLIC ENGINEERING, 2007, 9 (03) :277-292
[6]   Evaluation of regression models in metabolic physiology: predicting fluxes from isotopic data without knowledge of the pathway [J].
Antoniewicz, Maciek R. ;
Stephanopoulos, Gregory ;
Kelleher, Joanne K. .
METABOLOMICS, 2006, 2 (01) :41-52
[7]   Elementary metabolite units (EMU): A novel framework for modeling isotopic distributions [J].
Antoniewicz, Maciek R. ;
Kelleher, Joanne K. ;
Stephanopoulos, Gregory .
METABOLIC ENGINEERING, 2007, 9 (01) :68-86
[8]   Determination of confidence intervals of metabolic fluxes estimated from stable isotope measurements [J].
Antoniewicz, Maciek R. ;
Kelleher, Joanne K. ;
Stephanopoulos, Gregory .
METABOLIC ENGINEERING, 2006, 8 (04) :324-337
[9]   Measuring Deuterium Enrichment of Glucose Hydrogen Atoms by Gas Chromatography/Mass Spectrometry [J].
Antoniewicz, Maciek R. ;
Kelleher, Joanne K. ;
Stephanopoulos, Gregory .
ANALYTICAL CHEMISTRY, 2011, 83 (08) :3211-3216
[10]   Metabolic flux analysis and pharmaceutical production [J].
Boghigian, Brett A. ;
Seth, Gargi ;
Kiss, Robert ;
Pfeifer, Blaine A. .
METABOLIC ENGINEERING, 2010, 12 (02) :81-95