Expression profiling of lymphocyte plasma membrane proteins

被引:69
作者
Peirce, MJ [1 ]
Wait, R [1 ]
Begum, S [1 ]
Saklatvala, J [1 ]
Cope, AP [1 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Fac Med, Kennedy Inst Rheumatol Div, London W6 8LH, England
关键词
D O I
10.1074/mcp.M300064-MCP200
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The physicochemical properties of plasma membrane proteins of mammalian cells render them refractory to systematic analysis by two-dimensional electrophoresis. We have therefore used in vivo cell surface labeling with a water-soluble biotinylation reagent, followed by cell lysis and membrane purification, prior to affinity capture of biotinylated proteins. Purified membrane proteins were then separated by solution-phase isoelectric focusing and SDS-PAGE and identified by high-pressure liquid chromatography electrospray/tandem mass spectrometry. Using this approach, we identified 42 plasma membrane proteins from a murine T cell hybridoma and 46 from unfractionated primary murine splenocytes. These included three unexpected proteins; nicastrin, osteoclast inhibitory lectin, and a transmembrane domain-containing hypothetical protein of 11.4 kDa. Following stimulation of murine splenocytes with phorbol ester and calcium ionophore, we observed differences in expression of CD69, major histocompatibility complex class II molecules, the glucocorticoid-induced TNF receptor family-related gene product, and surface immunoglobulin M and D that were subsequently confirmed by Western blot or flow cytometric analysis. This approach offers a generic and powerful strategy for investigating differential expression of surface proteins in many cell types under varying environmental and pathophysiological conditions.
引用
收藏
页码:56 / 65
页数:10
相关论文
共 59 条
[1]   Comprehensive proteomic analysis of breast cancer cell membranes reveals unique proteins with potential roles in clinical cancer [J].
Adam, PJ ;
Boyd, R ;
Tyson, KL ;
Fletcher, GC ;
Stamps, A ;
Hudson, L ;
Poyser, HR ;
Redpath, N ;
Griffiths, M ;
Steers, G ;
Harris, AL ;
Patel, S ;
Berry, J ;
Loader, JA ;
Townsend, RR ;
Daviet, L ;
Legrain, P ;
Parekh, R ;
Terrett, JA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (08) :6482-6489
[2]   Two-dimensional electrophoresis of membrane proteins: A current challenge for immobilized pH gradients [J].
Adessi, C ;
Miege, C ;
Albrieux, C ;
Rabilloud, T .
ELECTROPHORESIS, 1997, 18 (01) :127-135
[3]   An invitation to T and more: Notch signaling in lymphopoiesis [J].
Allman, D ;
Punt, JA ;
Izon, DJ ;
Aster, JC ;
Pear, WS .
CELL, 2002, 109 :S1-S11
[4]   ANALYTICAL TECHNIQUES FOR CELL FRACTIONS .22. 2-DIMENSIONAL ANALYSIS OF SERUM AND TISSUE PROTEINS - MULTIPLE GRADIENT-SLAB GEL-ELECTROPHORESIS [J].
ANDERSON, NL ;
ANDERSON, NG .
ANALYTICAL BIOCHEMISTRY, 1978, 85 (02) :341-354
[5]   Characterization of mouse ALCAM (CD166): The CD6-binding domain is conserved in different homologs and mediates cross-species binding [J].
Bowen, MA ;
Bajorath, J ;
DEgidio, M ;
Whitney, GS ;
Palmer, D ;
Kobarg, J ;
Starling, GC ;
Siadak, AW ;
Aruffo, A .
EUROPEAN JOURNAL OF IMMUNOLOGY, 1997, 27 (06) :1469-1478
[6]   New zwitterionic detergents improve the analysis of membrane proteins by two-dimensional electrophoresis [J].
Chevallet, M ;
Santoni, V ;
Poinas, A ;
Rouquié, D ;
Fuchs, A ;
Kieffer, S ;
Rossignol, M ;
Lunardi, J ;
Garin, J ;
Rabilloud, T .
ELECTROPHORESIS, 1998, 19 (11) :1901-1909
[7]  
Cope AP, 1999, ARTHRITIS RHEUM, V42, P1497, DOI 10.1002/1529-0131(199907)42:7<1497::AID-ANR25>3.0.CO
[8]  
2-#
[9]   A presenilin-1-dependent γ-secretase-like protease mediates release of Notch intracellular domain [J].
De Strooper, B ;
Annaert, W ;
Cupers, P ;
Saftig, P ;
Craessaerts, K ;
Mumm, JS ;
Schroeter, EH ;
Schrijvers, V ;
Wolfe, MS ;
Ray, WJ ;
Goate, A ;
Kopan, R .
NATURE, 1999, 398 (6727) :518-522
[10]   Monoclonal antibodies targeting cancer: 'magic bullets' or just the trigger? [J].
Eccles, SA .
BREAST CANCER RESEARCH, 2001, 3 (02) :86-90