Two callose synthases, GSL1 and GSL5, play an essential and redundant role in plant and pollen development and in fertility

被引:164
作者
Enns, LC [1 ]
Kanaoka, MM
Torii, KU
Comai, L
Okada, K
Cleland, RE
机构
[1] Univ Washington, Dept Biol, Seattle, WA 98195 USA
[2] Kyoto Univ, Grad Sch Sci, Dept Bot, Sakyo Ku, Kyoto 6068502, Japan
[3] Core Res Sci & Technol Res Project, Tokyo, Japan
基金
美国国家科学基金会; 日本学术振兴会;
关键词
Arabidopsis; beta-1,3-glucan; callose; GSL1; GSL5; pollen;
D O I
10.1007/s11103-005-4526-7
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Callose, a beta-1,3-glucan that is widespread in plants, is synthesized by callose synthase. Arabidopsis thaliana contains a family of 12 putative callose synthase genes (GSL1-12). The role of callose and of the individual genes in plant development is still largely uncertain. We have now used TILLING and T-DNA insertion mutants (gsl1-1, gsl5-2 and gsl5-3) to study the role of two closely related and linked genes, GSL1 and GSL5, in sporophytic development and in reproduction. Both genes are expressed in all parts of the plant. Sporophytic development was nearly normal in gsl1-1 homozygotes and only moderately defective in homozygotes for either of the two gsl5 alleles. On the other hand, plants that were gsl1-1/+ gsl5/gsl5 were severely defective, with smaller leaves, shorter roots and bolts and smaller flowers. Plants were fertile when the sporophytes had either two wild-type GSL1 alleles, or one GSL5 allele in a gsl1-1 background, but gsl1-1/+ gsl5/gsl5 plants produced an extremely reduced number of viable seeds. A chromosome with mutations in both GSL1 and GSL5 rendered pollen infertile, although such a chromosome could be transmitted via the egg. As a result, it was not possible to obtain plants that were homozygous for mutations in both the GSL genes. Pollen grain development was severely affected in double mutant plants. Many pollen grains were collapsed and inviable in the gsl1-1/gsl1-1 gsl5/+ and gsl1-1/+ gsl5/gsl5 plants. In addition, gsl1-1/+ gsl5/gsl5 plants produced abnormally large pollen with unusual pore structures, and had problems with tetrad dissociation. In this particular genotype, while the callose wall formed around the pollen mother cells, no callose wall separated the resulting tetrads. We conclude that GSL1 and GSL5 play important, but at least partially redundant roles in both sporophytic development and in the development of pollen. They are responsible for the formation of the callose wall that separates the microspores of the tetrad, and also play a gametophytic role later in pollen grain maturation. Other GSL genes may control callose formation at different steps during pollen development.
引用
收藏
页码:333 / 349
页数:17
相关论文
共 45 条
[1]   DIFFERENTIAL STAINING OF ABORTED AND NONABORTED POLLEN [J].
ALEXANDER, MP .
STAIN TECHNOLOGY, 1969, 44 (03) :117-+
[2]   Genome-wide Insertional mutagenesis of Arabidopsis thaliana [J].
Alonso, JM ;
Stepanova, AN ;
Leisse, TJ ;
Kim, CJ ;
Chen, HM ;
Shinn, P ;
Stevenson, DK ;
Zimmerman, J ;
Barajas, P ;
Cheuk, R ;
Gadrinab, C ;
Heller, C ;
Jeske, A ;
Koesema, E ;
Meyers, CC ;
Parker, H ;
Prednis, L ;
Ansari, Y ;
Choy, N ;
Deen, H ;
Geralt, M ;
Hazari, N ;
Hom, E ;
Karnes, M ;
Mulholland, C ;
Ndubaku, R ;
Schmidt, I ;
Guzman, P ;
Aguilar-Henonin, L ;
Schmid, M ;
Weigel, D ;
Carter, DE ;
Marchand, T ;
Risseeuw, E ;
Brogden, D ;
Zeko, A ;
Crosby, WL ;
Berry, CC ;
Ecker, JR .
SCIENCE, 2003, 301 (5633) :653-657
[3]   Transcriptional profiling of Arabidopsis tissues reveals the unique characteristics of the pollen transcriptome [J].
Becker, JD ;
Boavida, LC ;
Carneiro, J ;
Haury, M ;
Feijó, JA .
PLANT PHYSIOLOGY, 2003, 133 (02) :713-725
[4]   Feulgen staining of intact plant tissues for confocal microscopy [J].
Braselton, JP ;
Wilkinson, MJ ;
Clulow, SA .
BIOTECHNIC & HISTOCHEMISTRY, 1996, 71 (02) :84-87
[5]   A putative plant homolog of the yeast β-1,3-glucan synthase subunit FKS1 from cotton (Gossypium hirsutum L.) fibers [J].
Cui, XJ ;
Shin, HS ;
Song, C ;
Laosinchai, W ;
Amano, Y ;
Brown, RM .
PLANTA, 2001, 213 (02) :223-230
[6]   Pollen tubes of Nicotiana alata express two genes from different β-glucan synthase families [J].
Doblin, MS ;
De Melis, L ;
Newbigin, E ;
Bacic, A ;
Read, SM .
PLANT PHYSIOLOGY, 2001, 125 (04) :2040-2052
[7]   Abnormal callose response phenotype and hypersusceptibility to Peronospora parasitica in defense-compromised Arabidopsis nim1-1 and salicylate hydroxylase-expressing plants [J].
Donofrio, NM ;
Delaney, TP .
MOLECULAR PLANT-MICROBE INTERACTIONS, 2001, 14 (04) :439-450
[8]   THE SACCHAROMYCES-CEREVISIAE FKS1 (ETG1) GENE ENCODES AN INTEGRAL MEMBRANE-PROTEIN WHICH IS A SUBUNIT OF 1,3-BETA-D-GLUCAN SYNTHASE [J].
DOUGLAS, CM ;
FOOR, F ;
MARRINAN, JA ;
MORIN, N ;
NIELSEN, JB ;
DAHL, AM ;
MAZUR, P ;
BAGINSKY, W ;
LI, WL ;
ELSHERBEINI, M ;
CLEMAS, JA ;
MANDALA, SM ;
FROMMER, BR ;
KURTZ, MB .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1994, 91 (26) :12907-12911
[9]   Pollen and stigma structure and function: The role of diversity in pollination [J].
Edlund, AF ;
Swanson, R ;
Preuss, D .
PLANT CELL, 2004, 16 :S84-S97
[10]   The PROSITE database, its status in 2002 [J].
Falquet, L ;
Pagni, M ;
Bucher, P ;
Hulo, N ;
Sigrist, CJA ;
Hofmann, K ;
Bairoch, A .
NUCLEIC ACIDS RESEARCH, 2002, 30 (01) :235-238